scholarly journals Cocaine-Induced Reinstatement of Cocaine Seeking Provokes Changes in the Endocannabinoid and N-Acylethanolamine Levels in Rat Brain Structures

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1125 ◽  
Author(s):  
Beata Bystrowska ◽  
Małgorzata Frankowska ◽  
Irena Smaga ◽  
Ewa Niedzielska-Andres ◽  
Lucyna Pomierny-Chamioło ◽  
...  

There is strong support for the role of the endocannabinoid system and the noncannabinoid lipid signaling molecules, N-acylethanolamines (NAEs), in cocaine reward and withdrawal. In the latest study, we investigated the changes in the levels of the above molecules and expression of cannabinoid receptors (CB1 and CB2) in several brain regions during cocaine-induced reinstatement in rats. By using intravenous cocaine self-administration and extinction procedures linked with yoked triad controls, we found that a priming dose of cocaine (10 mg/kg, i.p.) evoked an increase of the anadamide (AEA) level in the hippocampus and prefrontal cortex only in animals that had previously self-administered cocaine. In the same animals, the level of 2-arachidonoylglycerol (2-AG) increased in the hippocampus and nucleus accumbens. Moreover, the drug-induced relapse resulted in a potent increase in NAEs levels in the cortical areas and striatum and, at the same time, a decrease in the tissue levels of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) was noted in the nucleus accumbens, cerebellum, and/or hippocampus. At the level of cannabinoid receptors, a priming dose of cocaine evoked either upregulation of the CB1 and CB2 receptors in the prefrontal cortex and lateral septal nuclei or downregulation of the CB1 receptors in the ventral tegmental area. In the medial globus pallidus we observed the upregulation of the CB2 receptor only after yoked chronic cocaine treatment. Our findings support that in the rat brain, the endocannabinoid system and NAEs are involved in cocaine induced-reinstatement where these molecules changed in a region-specific manner and may represent brain molecular signatures for the development of new treatments for cocaine addiction.

2014 ◽  
Vol 998-999 ◽  
pp. 164-168 ◽  
Author(s):  
Lin Chen ◽  
Bao Miao Ma ◽  
Kai Yue ◽  
Qin Ru ◽  
Xiang Tian ◽  
...  

In order to investigate the influence of electroacupuncture on heroin seeking behavior and the expression of CB2-Rs in the relapse-relevant brain regions, heroin self-administration rat model which represents the heroin relapse behaviors was developed with progressive fixed ratio program. The model rats were randomly divided into 3 groups: control group, heroin-addicted group and 2Hz electroacupuncture group (stimulating on acupoints zusanli and sanyinjiao). The expression of CB2-Rs in the relapse-relevant brain regions were assessed with immunohistochemistry technologies. The reinstatement of heroin seeking behavior induced by conditioned cue priming showed that compared with the heroin-addicted group, active pokes in the 2Hz electroacupuncture group decreased significantly (p<0.05). Compared with the control group, the expression of CB2-Rs in prefrontal cortex (PFC) and nucleus accumbens (NAc) was significantly decreased (p<0.05) in heroin-addicted group and increaseed significantly recover (p<0.05) in the 2Hz electroacupuncture group. Our present results showed that 2Hz-electroacupuncture could attenuate the conditioned cue-evoked heroin-seeking behavior and the inhibitory effect was mediated partially by the increase CB2-Rs expression in relapse-relevant brain regions in heroin-addicted rats.


2019 ◽  
pp. 835-844
Author(s):  
L. CHEN ◽  
X.-K. GONG ◽  
C.-L. LENG ◽  
B.-M. MA ◽  
Q. RU ◽  
...  

Opiate addiction has a high rate of relapse. The accumulating evidence shows that electroacupuncture (EA) may be effective for the treatment of opiate relapse. However, the change of expression of CB1-Rs and CB2-Rs involve in 2Hz EA anti-relapse pathway is still unclear. To explore the changes of expression of CB1-Rs and CB2-Rs, heroin self-administration (SA) model rats were adopted and treated using 2Hz EA. The expressions of CB1-Rs and CB2-Rs were observed using immunohistochemistry method. The results showed that, compared with the control group, active pokes in the heroin-addicted group increased, while the active pokes decreased significantly in 2Hz EA group compared with heroin-addicted group. Correspondingly, the expression of CB1-Rs in prefrontal cortex (PFC), hippocampus (Hip), nucleus accumbens (NAc) and ventral tegmental area (VTA) all increased significantly while the expression of CB2-Rs in those relapse-relevant brain regions decreased obviously in heroin-addicted group when compared with the control group. In addition, the expression of CB1-Rs obviously decreased in the 2Hz EA group while the expression of CB2-Rs in those relapse-relevant brain regions increased significantly when compared with the heroin-addicted group. It indicated that 2Hz EA could attenuate the heroin-evoked seeking behaviors effectively. The anti-relapse effects of 2Hz EA might be related to the decrease of CB1-Rs and increase of CB2-Rs expression in relapse-relevant brain regions of heroin SA rats.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alejando Fuerte-Hortigón ◽  
Jaime Gonçalves ◽  
Laura Zeballos ◽  
Rubén Masa ◽  
Ricardo Gómez-Nieto ◽  
...  

The endocannabinoid system modulates epileptic seizures by regulating neuronal excitability. It has become clear that agonist activation of central type I cannabinoid receptors (CB1R) reduces epileptogenesis in pre-clinical animal models of epilepsy. The audiogenic seizure-prone hamster GASH/Sal is a reliable experimental model of generalized tonic-clonic seizures in response to intense sound stimulation. However, no studies hitherto had investigated CB1R in the GASH/Sal. Although the distribution of CB1R has been extensively studied in mammalian brains, their distribution in the Syrian golden hamster brain also remains unknown. The objective of this research is to determine by immunohistochemistry the differential distribution of CB1R in the brains of GASH/Sal animals under seizure-free conditions, by comparing the results with wild-type Syrian hamsters as controls. CB1R in the GASH/Sal showed a wide distribution in many nuclei of the central nervous system. These patterns of CB1R-immunolabeling are practically identical between the GASH/Sal model and control animals, varying in the intensity of immunostaining in certain regions, being slightly weaker in the GASH/Sal than in the control, mainly in brain regions associated with epileptic networks. The RT-qPCR analysis confirms these results. In summary, our study provides an anatomical basis for further investigating CB1R in acute and kindling audiogenic seizure protocols in the GASH/Sal model as well as exploring CB1R activation via exogenously administered cannabinoid compounds.


2020 ◽  
Vol 10 (8) ◽  
pp. 567
Author(s):  
Ansley Grimes Stanfill ◽  
Xueyuan Cao

A better understanding of dopaminergic gene expression will inform future treatment options for many different neurologic and psychiatric conditions. Here, we utilized the National Institutes of Health’s Genotype-Tissue Expression project (GTEx) dataset to investigate genotype by expression associations in seven dopamine pathway genes (ANKK1, DBH, DRD1, DRD2, DRD3, DRD5, and SLC6A3) in and across four human brain tissues (prefrontal cortex, nucleus accumbens, substantia nigra, and hippocampus). We found that age alters expression of DRD1 in the nucleus accumbens and prefrontal cortex, DRD3 in the nucleus accumbens, and DRD5 in the hippocampus and prefrontal cortex. Sex was associated with expression of DRD5 in substantia nigra and hippocampus, and SLC6A3 in substantia nigra. We found that three linkage disequilibrium blocks of SNPs, all located in DRD2, were associated with alterations in expression across all four tissues. These demographic characteristic associations and these variants should be further investigated for use in screening, diagnosis, and future treatment of neurological and psychiatric conditions.


2009 ◽  
Vol 89 (1) ◽  
pp. 309-380 ◽  
Author(s):  
Masanobu Kano ◽  
Takako Ohno-Shosaku ◽  
Yuki Hashimotodani ◽  
Motokazu Uchigashima ◽  
Masahiko Watanabe

The discovery of cannabinoid receptors and subsequent identification of their endogenous ligands (endocannabinoids) in early 1990s have greatly accelerated research on cannabinoid actions in the brain. Then, the discovery in 2001 that endocannabinoids mediate retrograde synaptic signaling has opened up a new era for cannabinoid research and also established a new concept how diffusible messengers modulate synaptic efficacy and neural activity. The last 7 years have witnessed remarkable advances in our understanding of the endocannabinoid system. It is now well accepted that endocannabinoids are released from postsynaptic neurons, activate presynaptic cannabinoid CB1 receptors, and cause transient and long-lasting reduction of neurotransmitter release. In this review, we aim to integrate our current understanding of functions of the endocannabinoid system, especially focusing on the control of synaptic transmission in the brain. We summarize recent electrophysiological studies carried out on synapses of various brain regions and discuss how synaptic transmission is regulated by endocannabinoid signaling. Then we refer to recent anatomical studies on subcellular distribution of the molecules involved in endocannabinoid signaling and discuss how these signaling molecules are arranged around synapses. In addition, we make a brief overview of studies on cannabinoid receptors and their intracellular signaling, biochemical studies on endocannabinoid metabolism, and behavioral studies on the roles of the endocannabinoid system in various aspects of neural functions.


2016 ◽  
Vol 36 (31) ◽  
pp. 8149-8159 ◽  
Author(s):  
M. M. M. Verheij ◽  
L. F. Vendruscolo ◽  
L. Caffino ◽  
G. Giannotti ◽  
M. Cazorla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document