scholarly journals Crown Procyanidin Tetramer: A Procyanidin with an Unusual Cyclic Skeleton with a Potent Protective Effect against Amyloid-β-Induced Toxicity

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1915 ◽  
Author(s):  
Liming Zeng ◽  
Pere Pons-Mercadé ◽  
Tristan Richard ◽  
Stéphanie Krisa ◽  
Pierre-Louis Teissèdre ◽  
...  

The structure of a new procyanidin tetramer, which we call a crown procyanidin tetramer, with an unprecedented macrocyclic structure has been characterized for the first time. Its comprehensive spectroscopic analysis revealed that it is a symmetric procyanidin tetramer composed of four (−)-epicatechin sub-units linked alternatively via 4β→8 or 4β→6 B-type interflavanyl linkages to form the macrocyclic structure. This NMR-characterized carbon skeleton has never been reported before for procyanidins in grape or in wine, neither in the plant kingdom. Surprisingly, the crown procyanidin tetramer appeared to be specifically localized in grape skin, contrasting with the oligomeric and polymeric procyanidins present in seed, skin, and bunch stem. Moreover, this crown procyanidin tetramer showed promising protective effects against amyloid-β induced toxicity.

2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Oleg Blum ◽  
Nataliya Didyk ◽  
Nataliya Pavluchenko ◽  
Barbara Godzik

Some modern agrochemicals with antioxidant potential were tested for their protective effect against ozone injury using clover and tobacco ozone-sensitive cultivars as model plants subjected to ambient ozone at two sites (Kyiv city in Ukraine and Szarów village in Poland). All used agrochemicals showed partial protective effects against ozone injury on clover and tobacco. Conducted studies confirmed the effectiveness of modern fungicides belonging to strobilurin group as protectants of sensitive crops against ozone damage. The effectiveness of new growth regulators “Emistym C” and “Agrostymulin” was showed for the first time. Out of the studied agrochemicals, fungicide “Strobi” and natural growth regulator “Emistym C” demonstrated the best protective effects. These agrochemicals present promise for further studies of their possible utilization for enhancement of ozone tolerance of sensitive crops.


2020 ◽  
Vol 26 ◽  
Author(s):  
Abdulqader Fadhil Abed ◽  
Yazun Bashir Jarrar ◽  
Hamzeh J Al-Ameer ◽  
Wajdy Al-Awaida ◽  
Su-Jun Lee

Background: Oxandrolone is a synthetic testosterone analogue that is widely used among bodybuilders and athletes. However, oxandrolone causes male infertility. Recently, it was found that metformin reduces the risk of infertility associated with diabetes mellitus. Aim: This study aimed to investigate the protective effects of metformin against oxandrolone-induced infertility in male rats. Methods: Rats continuously received one of four treatments (n=7) over 14 days: control DMSO administration, oxandrolone administration, metformin administration, or co-administration of oxandrolone and metformin. Doses were equivalent to those used for human treatment. Subsequently, testicular and blood samples were collected for morphological, biochemical, and histological examination. In addition, gene expression of the testosterone synthesizing enzyme CYP11A1 was analyzed in the testes using RT-PCR. Results: Oxandrolone administration induced male infertility by significantly reducing relative weights of testes by 48%, sperm count by 82%, and serum testosterone levels by 96% (ANOVA, P value < 0.05). In addition, histological examination determined that oxandrolone caused spermatogenic arrest which was associated with 2-fold downregulation of testicular CYP11A1 gene expression. However, co-administration of metformin with oxandrolone significantly ameliorated toxicological alterations induced by oxandrolone exposure (ANOVA, P value < 0.05). Conclusion: Metformin administration protected against oxandrolone-induced infertility in male rats. Further clinical studies are needed to confirm the protective effect of metformin against oxandrolone-induced infertility among athletes.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 479
Author(s):  
Seong Hoon Kim ◽  
Hye-Won Yum ◽  
Seung Hyeon Kim ◽  
Wonki Kim ◽  
Su-Jung Kim ◽  
...  

Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing β-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-α, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NFκB and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NFκB and STAT3.


1995 ◽  
Vol 48 (8) ◽  
pp. 1485 ◽  
Author(s):  
L Murray ◽  
G Currie ◽  
RJ Capon

A new macrocyclic γ- pyrone (10) and two known γ- pyrones (2) and (6) have been isolated from a Victorian collection of Phacelocarpus peperocarpos. The Z geometry about ∆17,18 in (2) has been established for the first time. All structure elucidations were supported by detailed spectroscopic analysis.


2015 ◽  
Vol 159 ◽  
pp. 122-128 ◽  
Author(s):  
Hitomi Kanno ◽  
Zenji Kawakami ◽  
Masahiro Tabuchi ◽  
Kazushige Mizoguchi ◽  
Yasushi Ikarashi ◽  
...  

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ahmed A Elmarakby ◽  
Jessica Faulkner ◽  
Chelsey Pye ◽  
Babak Baban ◽  
Katelyn Rouch ◽  
...  

We previously showed that inhibition of soluble epoxide hydrolase (sEH) increased epoxyeicosatrienoic acids (EETs) levels and reduced renal injury in diabetic mice and these changes were associated with induction of hemeoxygenase-1 (HO-1). The present study determines whether the inhibition of HO negates the reno-protective effect of sEH inhibition in diabetic spontaneously hypertensive rats as a model of diabetic nephropathy in which hypertension coexists with diabetes. After six weeks of induction of diabetes with streptozotocin, SHR were divided into the following groups: untreated, treated with the sEH inhibitor, trans -4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (AUCB), treated with the HO inhibitor, stannous mesoporphyrin (SnMP), and treated with both inhibitors for four more weeks; non diabetic SHR served as a control group. Although inhibition of sEH increased renal EETs/DHETEs ratio and HO-1 activity in diabetic SHR, it did not significantly alter blood pressure (plasma EETs/DHETEs ratio was 0.5± 0.1 in AUCB-treated vs. 0.1± 0.01 in untreated diabetic SHR, P<0.05). Treatment of diabetic SHR with AUCB reduced the elevation in urinary albumin and nephrin excretion (albuminuria was 6.5± 0.5 in AUCB-treated diabetic SHR vs. 9± 1.7 mg/day in untreated diabetic SHR and nephrinuria was 70±11 in AUCB-treated diabetic SHR vs. 111± 9 μg/day in untreated diabetic SHR, P<0.05) whereas co-administration of SnMP with AUCB prevented these changes (albuminuria was 10.6± 0.6 mg/day and nephrinuria was 91±11 μg/day). Immunohistochemical analysis revealed elevations in renal fibrosis and apoptosis as evidenced by increased renal TGF-β, fibronectin and annexin V expression in diabetic SHR and these changes were reduced with sEH inhibition. Co-administration of SnMP with AUCB prevented its ability to reduce renal fibrosis and apoptosis in diabetic SHR. In addition, SnMP treatment also prevented AUCB-induced decreases in renal macrophage infiltration and renal TGF-β, NFκB and MCP-1 levels in diabetic SHR. These data suggest that HO-1 induction is involved in the protective effect of sEH inhibition against diabetic renal injury.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Sheng-Yong Luo ◽  
Qing-Hua Xu ◽  
Gong Peng ◽  
Zhi-Wu Chen

Objectives. Total flavones from Rhododendron simsii Planch. (TFR) are the effective part extracted from the flowers of Rhododendron simsii Planch. and have obvious protective effects against cerebral ischemic or myocardial injuries in rabbits and rats. However, their mechanism of cardioprotection is still unrevealed. Therefore, the present study was designed to investigate the effect of TFR on myocardial I/R injury and the underlying mechanism. Methods. TFR groups were treated by gavage once a day for 3 days at a dose of 20, 40, and 80 mg/kg, respectively, and then the model of myocardial I/R injury was established. Myocardial infarction, ST-segment elevation, and the expression of UTR, ROCK1, ROCK2, and p-MLC protein in rat myocardium were determined at 90 min after reperfusion. UTR siRNA in vivo transfection and competition binding assay method were used to study the relationship between the protective effect of TFR and UTR. Results. The expression of UTR protein markedly decreased in myocardium of UTR siRNA transfection group rats. TFR could significantly reduce the infarct size and inhibit the increase of RhoA activity and ROCK1, ROCK2, and p-MLC protein expressions both in WT and UTR knockdown rats. The reducing rate of TFR in myocardial infarction area, RhoA activity, and ROCK1, ROCK2, and p-MLC protein expressions in UTR knockdown rats decreased markedly compared with that in WT rats. In addition, TFR had no obvious effect on the increase of ΣST in UTR knockdown rats in comparison with that in model group. In particular, TFR could significantly inhibit the combination of [I125]-hu-II and UTR, and IC50 was 0.854 mg/l. Conclusions. The results indicate that the protective effect of TFR on I/R injury may be correlated with its blocking UTR and the subsequent inhibition of RhoA/ROCK signaling pathway.


2019 ◽  
Vol 64 (3) ◽  
pp. 132-139
Author(s):  
P. S. Usoltseva ◽  
A. V. Alimov ◽  
A. V. Rezaykin ◽  
A. G. Sergeev ◽  
A. V. Novoselov

The aim of this study was to determine the role of the human neonatal receptor for the Fc fragment of IgG (hFcRn) as a common uncoating cellular receptor for echoviruses and coxsackievirus A9 during infection of human rhabdomyosarcoma (RD) cells. Material and methods. The protective effect of the human serum albumin, purified from globulins, (HSA-GF) and antibodies to hFcRn was studied in RD cells infected with several strains and clones of species B enteroviruses possessing different receptor specificity (echoviruses 3, 9, 11, 30 and coxsackieviruses A9, B4, B5). Results. It was shown that HSA-GF at concentrations of 4% or less protected RD cells from infection with echoviruses 3, 9, 11 and coxsackievirus A9. The antibodies to hFcRn at concentrations of 2.5 ug/mL or less demonstrated the similar spectrum of protective activity in RD cells against infection with echoviruses 3, 9, 11, 30 and coxsackievirus A9. The protective effect of HSA-GF or the antibodies to hFcRn was not observed in RD cells infected with coxsackieviruses B4 and B5 that need coxsackievirus-adenovirus receptor for uncoating. Discussion. The usage of the previously characterized echovirus 11 clonal variants with different receptor specificity allowed us to define the function of hFcRn as a canyon-binding uncoating receptor in RD cells. The kinetics and magnitude of the observed protective effects correlated with receptor specificity of the enteroviruses used in this work supporting the two-step interaction of DAF-dependent echoviruses with the cellular receptors. Conclusions. In this study, the function of hFcRn was defined in RD cells as a canyon-binding and uncoating receptor for echoviruses and coxsackievirus A9. The two-step interaction of DAF-dependent echoviruses during entry into the cells was confirmed: initially with the binding receptor DAF and subsequently with the uncoating receptor hFcRn.


Author(s):  
Dung Thi Kim Le ◽  
Hao Xuan Bui ◽  
Tuyet Thi Anh Nguyen ◽  
Tuyen Nguyen Kim Pham ◽  
Huy Thuc Duong

Euphorbia tirucalli has not been chemically studied much in Vietnam. This research described the isolation and elucidation of compounds isolated from the plant collected in Binh Thuan. Multiple chromatographic methods were applied, including normal phase silica gel column chromatography and thin-layer chromatography. Seven compounds were isolated and their chemical structures were elucidated by spectroscopic analysis as well as comparing their data with the ones in the literature. They are arjunolic acid (1), eriodictyol (2), quercitrin (3), afzelin (4), scopoletin (5), 3,3′,4- trimethylellagic acid (6), and gallic acid (7). Among them, compound 1 a major component was isolated for the first time in Euphorbia genus, while three compounds 2, 4, and 5 were isolated from this species for the first time.


Sign in / Sign up

Export Citation Format

Share Document