Impact of constitutive plant natural products on herbivores and pathogensThe present review is one in the special series of reviews on animal–plant interactions.

2010 ◽  
Vol 88 (7) ◽  
pp. 615-627 ◽  
Author(s):  
John T. Arnason ◽  
Mark A. Bernards

Plants defend themselves from pests with deterrent or toxic phytochemicals. In addition to the development of preformed mechanical barriers such as cutin and suberin, the first line of defense for plants against pathogens and herbivores is constitutive (preformed) biologically active inhibitors. Because of the adaptation of insects and pathogens to these inhibitors, plants have evolved a stunning diversity of new and different bioactive molecules to combat pests. Some representative mechanisms of plant defense include the use of antimicrobial, anitfeedant, and phototoxic molecules. Examples of natural product defenses of specific plant families are also described. Diversity and redundancy in plant defenses is key to slowing pest resistance to host-plant defenses.

2020 ◽  
Vol 17 (2) ◽  
pp. 82-90 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Mohajer ◽  
Zohreh kheilkordi

Background: Natural products have been received attention due to their importance in human life as those are biologically active. In this review, there are some reports through different methods related to the synthesis of the indolizidine 195B which was extracted from poisonous frog; however, due to respect nature, the synthesis of natural compounds such as indolizidine has been attracted much attention among scientists and researchers. Objective: This review discloses the procedures and methods to provide indolizidine 195B from 1989 to 2018 due to their importance as a natural product. Conclusion: There are several methods to give rise to the indolizidine 195B as a natural product that is highly active from the biological perspective in pharmaceutical chemistry. In summary, many protocols for the preparations of indolizidine 195B from various substrates, several reagents, and conditions have been reported from different aromatic and aliphatic.


2014 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Geoffrey A. Cordell

“Why didn’t they develop natural product drugs in a sustainable manner at the beginning of this century?”  In 2035, when about 10.0 billion will inhabit Earth, will this be our legacy as the world contemplates the costs and availability of synthetic and gene-based products for primary health care?  Acknowledging the recent history of the relationship between humankind and the Earth, it is essential that the health care issues being left for our descendants be considered in terms of resources. For most people in the world, there are two vast health care “gaps”, access to quality drugs and the development of drugs for major global and local diseases.  Consequently for all of these people, plants, in their various forms, remain a primary source of health care.  In the developed countries, natural products derived from plants assume a relatively minor role in health care, as prescription and over-the-counter products, even with the widespread use of phytotherapeutical preparations.  Significantly, pharmaceutical companies have retrenched substantially in their disease areas of focus.  These research areas do not include the prevalent diseases of the middle- and lower-income countries, and important diseases of the developed world, such as drug resistance. What then is the vision for natural product research to maintain the choices of drug discovery and pharmaceutical development for future generations?  In this discussion some facets of how natural products must be involved globally, in a sustainable manner, for improving health care will be examined within the framework of the new term “ecopharmacognosy”, which invokes sustainability as the basis for research on biologically active natural products.  Access to the biome, the acquisition, analysis and dissemination of plant knowledge, natural product structure diversification, biotechnology development, strategies for natural product drug discovery, and aspects of multitarget therapy and synergy research will be discussed.  Options for the future will be presented which may be significant as countries decide how to develop approaches to relieve their own disease burden, and the needs of their population for improved access to medicinal agents.


2009 ◽  
Vol 4 (12) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Francesco Epifano ◽  
Caroline Pelucchini ◽  
Massimo Curini ◽  
Salvatore Genovese

7-Isopentenyloxycoumarin is a prenyloxyphenylpropanoid derivative found in low concentration in a restricted number of plant families (Apiaceae, Asteraceae, and Rutaceae). Synthetic schemes were recently developed enabling sufficient quantities of the title coumarin to be obtained in order to evidence its valuable biological effects, mainly as an anticancer agent. The aim of this review is to examine the phytochemical and pharmacological properties of this compound.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2067 ◽  
Author(s):  
Mubasher Hussain ◽  
Biswojit Debnath ◽  
Muhammad Qasim ◽  
Bamisope Steve Bamisile ◽  
Waqar Islam ◽  
...  

The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae) is a very destructive crucifer-specialized pest that has resulted in significant crop losses worldwide. DBM is well attracted to glucosinolates (which act as fingerprints and essential for herbivores in host plant recognition) containing crucifers such as wintercress, Barbarea vulgaris (Brassicaceae) despite poor larval survival on it due to high-to-low concentration of saponins and generally to other plants in the genus Barbarea. B. vulgaris build up resistance against DBM and other herbivorous insects using glucosinulates which are used in plant defense. Aside glucosinolates, Barbarea genus also contains triterpenoid saponins, which are toxic to insects and act as feeding deterrents for plant specialist herbivores (such as DBM). Previous studies have found interesting relationship between the host plant and secondary metabolite contents, which indicate that attraction or resistance to specialist herbivore DBM, is due to higher concentrations of glucosinolates and saponins in younger leaves in contrast to the older leaves of Barbarea genus. As a response to this phenomenon, herbivores as DBM has developed a strategy of defense against these plant biochemicals. Because there is a lack of full knowledge in understanding bioactive molecules (such as saponins) role in plant defense against plant herbivores. Thus, in this review, we discuss the role of secondary plant metabolites in plant defense mechanisms against the specialist herbivores. In the future, trials by plant breeders could aim at transferring these bioactive molecules against herbivore to cash crops.


Author(s):  
Guadalupe Y. Solís-Cruz ◽  
Luis A. Pérez-López ◽  
Rocio Alvarez-Roman ◽  
Verónica M. Rivas-Galindo ◽  
David A. Silva-Mares ◽  
...  

: Natural products are an important source of bioactive molecules. However, the development of biological applications based on these compounds is hindered by intrinsic problems in their solubility, volatility, degradation, and bioavailability. Nanocarriers as drug administration systems promise to overcome these limitations by providing controlled and directed delivery. This review aims to present: 1) the most frequently used nanocarriers as natural product administration systems, based on the progress of controlled and directed release, and 2) the challenges associated with the use of nanocarriers as therapeutic agents.


Synlett ◽  
2017 ◽  
Vol 29 (04) ◽  
pp. 401-409 ◽  
Author(s):  
Bradley Moore

Meroterpenoid natural products are important bioactive molecules with broad distribution throughout nature. In Streptomyces bacteria, naphthoquinone-based meroterpenoids comprise a simple yet structurally fascinating group of natural product antibiotics that are enzymatically constructed through a series of asymmetric alkene and arene halofunctionalization reactions. This account article highlights our discovery and characterization of a group of vanadium-dependent chloroperoxidase enzymes that catalyze halogen-assisted cyclization and rearrangement reactions and have inspired biomimetic syntheses of numerous meroterpenoid natural products.1 Introduction2 Early Biosynthetic Insights and the Characterization of Alkene Halofunctionalization in Napyradiomycin Biosynthesis3 Discovery of the Merochlorin Natural Products and Enzymatic Aryl Halofunctionalization4 Discovery and Development of Unifying THN-Based Meroterpenoid Biosynthesis and Synthesis Approaches5 Insights into Naphterpin and Marinone Biosynthesis Involving Cryptic Aryl Halofunctionalization Reactions6 Closing Thoughts


2008 ◽  
Vol 105 (40) ◽  
pp. 15311-15316 ◽  
Author(s):  
Eric J. Dimise ◽  
Paul F. Widboom ◽  
Steven D. Bruner

Bacteria belonging to the order Actinomycetales have proven to be an important source of biologically active and often therapeutically useful natural products. The characterization of orphan biosynthetic gene clusters is an emerging and valuable approach to the discovery of novel small molecules. Analysis of the recently sequenced genome of the thermophilic actinomyceteThermobifida fuscarevealed an orphan nonribosomal peptide biosynthetic gene cluster coding for an unknown siderophore natural product.T. fuscais a model organism for the study of thermostable cellulases and is a major degrader of plant cell walls. Here, we report the isolation and structure elucidation of the fuscachelins, siderophore natural products produced byT. fusca. In addition, we report the purification and biochemical characterization of the termination module of the nonribosomal peptide synthetase. Biochemical analysis of adenylation domain specificity supports the assignment of this gene cluster as the producer of the fuscachelin siderophores. The proposed nonribosomal peptide biosynthetic pathway exhibits several atypical features, including a macrocyclizing thioesterase that produces a 10-membered cyclic depsipeptide and a nonlinear assembly line, resulting in the unique heterodimeric architecture of the siderophore natural product.


Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 515
Author(s):  
Christopher A. Leber ◽  
C. Benjamin Naman ◽  
Lena Keller ◽  
Jehad Almaliti ◽  
Eduardo J. E. Caro-Diaz ◽  
...  

The tropical marine cyanobacterium Moorena bouillonii occupies a large geographic range across the Indian and Western Tropical Pacific Oceans and is a prolific producer of structurally unique and biologically active natural products. An ensemble of computational approaches, including the creation of the ORCA (Objective Relational Comparative Analysis) pipeline for flexible MS1 feature detection and multivariate analyses, were used to analyze various M. bouillonii samples. The observed chemogeographic patterns suggested the production of regionally specific natural products by M. bouillonii. Analyzing the drivers of these chemogeographic patterns allowed for the identification, targeted isolation, and structure elucidation of a regionally specific natural product, doscadenamide A (1). Analyses of MS2 fragmentation patterns further revealed this natural product to be part of an extensive family of herein annotated, proposed natural structural analogs (doscadenamides B–J, 2–10); the ensemble of structures reflect a combinatorial biosynthesis using nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) components. Compound 1 displayed synergistic in vitro cancer cell cytotoxicity when administered with lipopolysaccharide (LPS). These discoveries illustrate the utility in leveraging chemogeographic patterns for prioritizing natural product discovery efforts.


RSC Advances ◽  
2020 ◽  
Vol 10 (21) ◽  
pp. 12626-12652 ◽  
Author(s):  
Amardeep Awasthi ◽  
Mandeep Singh ◽  
Garima Rathee ◽  
Ramesh Chandra

We have provided contextual information on the chemistry of 3-substituted phthalides and their significance in natural product synthesis.


Sign in / Sign up

Export Citation Format

Share Document