scholarly journals Resveratrol as a Growth Substrate for Bacteria from the Rhizosphere

2018 ◽  
Vol 84 (10) ◽  
Author(s):  
Zohre Kurt ◽  
Marco Minoia ◽  
Jim C. Spain

ABSTRACT Resveratrol is among the best-known secondary plant metabolites because of its antioxidant, anti-inflammatory, and anticancer properties. It also is an important allelopathic chemical widely credited with the protection of plants from pathogens. The ecological role of resveratrol in natural habitats is difficult to establish rigorously, because it does not seem to accumulate outside plant tissue. It is likely that bacterial degradation plays a key role in determining the persistence, and thus the ecological role, of resveratrol in soil. Here, we report the isolation of an Acinetobacter species that can use resveratrol as a sole carbon source from the rhizosphere of peanut plants. Both molecular and biochemical techniques indicate that the pathway starts with the conversion of resveratrol to 3,5-dihydroxybenzaldehyde and 4-hydroxybenzaldehyde. The aldehydes are oxidized to substituted benzoates that subsequently enter central metabolism. The gene that encodes the enzyme responsible for the oxidative cleavage of resveratrol was cloned and expressed in Escherichia coli to establish its function. Its physiological role in the resveratrol catabolic pathway was established by knockouts and by the reverse transcription-quantitative PCR (RT-qPCR) demonstration of expression during growth on resveratrol. The results establish the presence and capabilities of resveratrol-degrading bacteria in the rhizosphere of the peanut plants and set the stage for studies to evaluate the role of the bacteria in plant allelopathy. IMPORTANCE In addition to its antioxidant properties, resveratrol is representative of a broad array of allelopathic chemicals produced by plants to inhibit competitors, herbivores, and pathogens. The bacterial degradation of such chemicals in the rhizosphere would reduce the effects of the chemicals. Therefore, it is important to understand the activity and ecological role of bacteria that biodegrade resveratrol near the plants that produce it. This study describes the isolation from the peanut rhizosphere of bacteria that can grow on resveratrol. The characterization of the initial steps in the biodegradation process sets the stage for the investigation of the evolution of the catabolic pathways responsible for the biodegradation of resveratrol and its homologs.

2018 ◽  
Vol 85 (5) ◽  
Author(s):  
Ri-Qing Yu ◽  
Zohre Kurt ◽  
Fei He ◽  
Jim C. Spain

ABSTRACT Many plants produce allelopathic chemicals, such as stilbenes, to inhibit pathogenic fungi. The degradation of allelopathic compounds by bacteria associated with the plants would limit their effectiveness, but little is known about the extent of biodegradation or the bacteria involved. Screening of tissues and rhizosphere of peanut (Arachis hypogaea) plants revealed substantial enrichment of bacteria able to grow on resveratrol and pterostilbene, the most common stilbenes produced by the plants. Investigation of the catabolic pathway in Sphingobium sp. strain JS1018, isolated from the rhizosphere, indicated that the initial cleavage of pterostilbene was catalyzed by a carotenoid cleavage oxygenase (CCO), which led to the transient accumulation of 4-hydroxybenzaldehyde and 3,5-dimethoxybenzaldehyde. 4-Hydroxybenzaldehyde was subsequently used for the growth of the isolate, while 3,5-dimethoxybenzaldehyde was further converted to a dead-end metabolite with a molecular weight of 414 (C24H31O6). The gene that encodes the initial oxygenase was identified in the genome of strain JS1018, and its function was confirmed by heterologous expression in Escherichia coli. This study reveals the biodegradation pathway of pterostilbene by plant-associated bacteria. The prevalence of such bacteria in the rhizosphere and plant tissues suggests a potential role of bacterial interference in plant allelopathy. IMPORTANCE Pterostilbene, an analog of resveratrol, is a stilbene allelochemical produced by plants to inhibit microbial infection. As a potent antioxidant, pterostilbene acts more effectively than resveratrol as an antifungal agent. Bacterial degradation of this plant natural product would affect the allelopathic efficacy and fate of pterostilbene and thus its ecological role. This study explores the isolation and abundance of bacteria that degrade resveratrol and pterostilbene in peanut tissues and rhizosphere, the catabolic pathway for pterostilbene, and the molecular basis for the initial cleavage of pterostilbene. If plant allelopathy is an important process in agriculture and management of invasive plants, the ecological role of bacteria that degrade the allelopathic chemicals must be equally important.


2016 ◽  
Vol 82 (9) ◽  
pp. 2843-2853 ◽  
Author(s):  
Benjamin Horemans ◽  
Karolien Bers ◽  
Erick Ruiz Romero ◽  
Eva Pose Juan ◽  
Vincent Dunon ◽  
...  

ABSTRACTThe abundance oflibA, encoding a hydrolase that initiates linuron degradation in the linuron-metabolizingVariovoraxsp. strain SRS16, was previously found to correlate well with linuron mineralization, but not in all tested environments. Recently, an alternative linuron hydrolase, HylA, was identified inVariovoraxsp. strain WDL1, a strain that initiates linuron degradation in a linuron-mineralizing commensal bacterial consortium. The discovery of alternative linuron hydrolases poses questions about the respective contribution and competitive character ofhylA- andlibA-carrying bacteria as well as the role of linuron-mineralizing consortia versus single strains in linuron-exposed settings. Therefore, dynamics ofhylAas well asdcaQas a marker for downstream catabolic functions involved in linuron mineralization, in response to linuron treatment in agricultural soil and on-farm biopurification systems (BPS), were compared with previously reportedlibAdynamics. The results suggest that (i) organisms containing eitherlibAorhylAcontribute simultaneously to linuron biodegradation in the same environment, albeit to various extents, (ii) environmental linuron mineralization depends on multispecies bacterial food webs, and (iii) initiation of linuron mineralization can be governed by currently unidentified enzymes.IMPORTANCEA limited set of different isofunctional catabolic gene functions is known for the bacterial degradation of the phenylurea herbicide linuron, but the role of this redundancy in linuron degradation in environmental settings is not known. In this study, the simultaneous involvement of bacteria carrying one of two isofunctional linuron hydrolysis genes in the degradation of linuron was shown in agricultural soil and on-farm biopurification systems, as was the involvement of other bacterial populations that mineralize the downstream metabolites of linuron hydrolysis. This study illustrates the importance of the synergistic metabolism of pesticides in environmental settings.


2020 ◽  
pp. 253-287 ◽  
Author(s):  
Inna Ermakova ◽  
Alexey Leontievsky ◽  
Alexey Sviridov ◽  
Tatyana Shushkova ◽  
Dmitriy Epiktetov

The major contribution of microorganisms in metabolism of natural and synthetic phosphonates, the biochemical bases of these processes and possible interactions between degrading bacteria in natural and anthropogenic ecosystems are presented in the light of the recent data on significant role of reduced phosphorus compounds in the biosphere. Special emphasis is placed on C-P lyase and phosphonatase which are pivotal enzyme systems for catabolism of both natural and synthetic phosphonates. Modern data on structure, diversity, regulation and physiological role of both enzymes are reviewed and discussed.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Masae Horinouchi ◽  
Hiroyuki Koshino ◽  
Michal Malon ◽  
Hiroshi Hirota ◽  
Toshiaki Hayashi

ABSTRACT Comamonas testosteroni TA441 degrades steroids via aromatization of the A ring, followed by degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, mainly by β-oxidation. In this study, we revealed that 7β,9α-dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-coenzyme A (CoA) ester is dehydrogenated by (3S)-3-hydroxylacyl CoA-dehydrogenase, encoded by scdE (ORF27), and then the resultant 9α-hydroxy-7,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is converted by 3-ketoacyl-CoA transferase, encoded by scdF (ORF23). With these results, the whole cycle of β-oxidation on the side chain at C-8 of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid is clarified; 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is dehydrogenated at C-6 by ScdC1C2, followed by hydration by ScdD. 7β,9α-Dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-CoA ester then is dehydrogenated by ScdE to be converted to 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid-CoA ester and acetyl-CoA by ScdF. ScdF is an ortholog of FadA6 in Mycobacterium tuberculosis H37Rv, which was reported as a 3-ketoacyl-CoA transferase involved in C ring cleavage. We also obtained results suggesting that ScdF is also involved in C ring cleavage, but further investigation is required for confirmation. ORF25 and ORF26, located between scdF and scdE, encode enzymes belonging to the amidase superfamily. Disrupting either ORF25 or ORF26 did not affect steroid degradation. Among the bacteria having gene clusters similar to those of tesB to tesR, some have both ORF25- and ORF26-like proteins or only an ORF26-like protein, but others do not have either ORF25- or ORF26-like proteins. ORF25 and ORF26 are not crucial for steroid degradation, yet they might provide clues to elucidate the evolution of bacterial steroid degradation clusters. IMPORTANCE Studies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment as well as in relation to human health is attracting attention. The overall aerobic degradation of the four basic steroidal rings has been proposed; however, there is still much to be revealed to understand the complete degradation pathway. This study aims to uncover the whole steroid degradation process in Comamonas testosteroni TA441 as a model of steroid-degrading bacteria. C. testosteroni is one of the most studied representative steroid-degrading bacteria and is suitable for exploring the degradation pathway, because the involvement of degradation-related genes can be determined by gene disruption. Here, we elucidated the entire β-oxidation cycle of the cleaved B ring. This cycle is essential for the following C and D ring cleavage.


2017 ◽  
Vol 199 (21) ◽  
Author(s):  
Keugtae Kim ◽  
Yoko Chiba ◽  
Azusa Kobayashi ◽  
Hiroyuki Arai ◽  
Masaharu Ishii

ABSTRACT Hydrogenobacter thermophilus is an obligate chemolithoautotrophic bacterium of the phylum Aquificae and is capable of fixing carbon dioxide through the reductive tricarboxylic acid (TCA) cycle. The recent discovery of two novel-type phosphoserine phosphatases (PSPs) in H. thermophilus suggests the presence of a phosphorylated serine biosynthesis pathway; however, the physiological role of these novel-type metal-independent PSPs (iPSPs) in H. thermophilus has not been confirmed. In the present study, a mutant strain with a deletion of pspA, the catalytic subunit of iPSPs, was constructed and characterized. The generated mutant was a serine auxotroph, suggesting that the novel-type PSPs and phosphorylated serine synthesis pathway are essential for serine anabolism in H. thermophilus. As an autotrophic medium supplemented with glycine did not support the growth of the mutant, the reversible enzyme serine hydroxymethyltransferase does not appear to synthesize serine from glycine and may therefore generate glycine and 5,10-CH2-tetrahydrofolate (5,10-CH2-THF) from serine. This speculation is supported by the lack of glycine cleavage activity, which is needed to generate 5,10-CH2-THF, in H. thermophilus. Determining the mechanism of 5,10-CH2-THF synthesis is important for understanding the fundamental anabolic pathways of organisms, because 5,10-CH2-THF is a major one-carbon donor that is used for the synthesis of various essential compounds, including nucleic and amino acids. The findings from the present experiments using a pspA deletion mutant have confirmed the physiological role of iPSPs as serine producers and show that serine is a major donor of one-carbon units in H. thermophilus. IMPORTANCE Serine biosynthesis and catabolism pathways are intimately related to the metabolism of 5,10-CH2-THF, a one-carbon donor that is utilized for the biosynthesis of various essential compounds. For this reason, determining the mechanism of serine synthesis is important for understanding the fundamental anabolic pathways of microorganisms. In the present study, we experimentally confirmed that a novel phosphoserine phosphatase in the obligate chemolithoautotrophic bacterium Hydrogenobacter thermophilus is essential for serine biosynthesis. This finding indicates that serine is synthesized from an intermediate of gluconeogenesis in H. thermophilus. In addition, because glycine cleavage system activity and genes encoding an enzyme capable of producing 5,10-CH2-THF were not detected, serine appears to be the major one-carbon donor to tetrahydrofolate (THF) in H. thermophilus.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Takako Hirano ◽  
Manabu Okubo ◽  
Hironobu Tsuda ◽  
Masahiro Yokoyama ◽  
Wataru Hakamata ◽  
...  

ABSTRACT Vibrio parahaemolyticus RIMD2210633 secretes both chitinase and chitin oligosaccharide deacetylase and produces β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) from chitin. Previously, we reported that GlcNAc-GlcN induces chitinase production by several strains of Vibrio harboring chitin oligosaccharide deacetylase genes (T. Hirano, K. Kadokura, T. Ikegami, Y. Shigeta, et al., Glycobiology 19:1046–1053, 2009). The metabolism of chitin by Vibrio was speculated on the basis of the findings of previous studies, and the role of chitin oligosaccharide produced from chitin has been well studied. However, the role of GlcNAc-GlcN in the Vibrio chitin degradation system, with the exception of the above-mentioned function as an inducer of chitinase production, remains unclear. N,N′-Diacetylchitobiose, a homodisaccharide produced from chitin, is known to induce the expression of genes encoding several proteins involved in chitin metabolism in Vibrio strains (K. L. Meibom, X. B. Li, A. Nielsen, C. Wu, et al., Proc Natl Acad Sci U S A 101:2524–2529, 2004). We therefore hypothesized that GlcNAc-GlcN also affects the expression of enzymes involved in chitin metabolism in the same manner. In this study, we examined the induction of protein expression by several sugars released from chitin using peptide mass fingerprinting and confirmed the expression of genes encoding enzymes involved in chitin metabolism using real-time quantitative PCR analysis. We then confirmed that GlcNAc-GlcN induces the expression of genes encoding many soluble enzymes involved in chitin degradation in Vibrio parahaemolyticus. Here, we demonstrate that GlcNAc-GlcN enhances the chitin-metabolizing ability of V. parahaemolyticus. IMPORTANCE We demonstrate that β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) enhances the chitin-metabolizing ability of V. parahaemolyticus. Members of the genus Vibrio are chitin-degrading bacteria, and some species of this genus are associated with diseases affecting fish and animals, including humans (F. L. Thompson, T. Iida, and J. Swings, Microbiol Mol Biol Rev 68:403–431, 2004; M. Y. Ina-Salwany, N. Al-Saari, A. Mohamad, F.-A. Mursidi, et al., J Aquat Anim Health 31:3–22, 2019). Studies on Vibrio are considered important, as they may facilitate the development of solutions related to health, food, and aquaculture problems attributed to this genus. This report enhances the current understanding of chitin degradation by Vibrio bacteria.


2013 ◽  
Vol 82 (1) ◽  
pp. 316-332 ◽  
Author(s):  
Ana C. Posada ◽  
Stacey L. Kolar ◽  
Renata G. Dusi ◽  
Patrice Francois ◽  
Alexandra A. Roberts ◽  
...  

ABSTRACTInStaphylococcus aureus, the low-molecular-weight thiol called bacillithiol (BSH), together with cognateS-transferases, is believed to be the counterpart to the glutathione system of other organisms. To explore the physiological role of BSH inS. aureus, we constructed mutants with the deletion ofbshA(sa1291), which encodes the glycosyltransferase that catalyzes the first step of BSH biosynthesis, andfosB(sa2124), which encodes a BSH-S-transferase that confers fosfomycin resistance, in severalS. aureusstrains, including clinical isolates. Mutation offosBorbshAcaused a 16- to 60-fold reduction in fosfomycin resistance in theseS. aureusstrains. High-pressure liquid chromatography analysis, which quantified thiol extracts, revealed some variability in the amounts of BSH present acrossS. aureusstrains. Deletion offosBled to a decrease in BSH levels. ThefosBandbshAmutants of strain COL and a USA300 isolate, upon further characterization, were found to be sensitive to H2O2and exhibited decreased NADPH levels compared with those in the isogenic parents. Microarray analyses of COL and the isogenicbshAmutant revealed increased expression of genes involved in staphyloxanthin synthesis in thebshAmutant relative to that in COL under thiol stress conditions. However, thebshAmutant of COL demonstrated decreased survival compared to that of the parent in human whole-blood survival assays; likewise, the naturally BSH-deficient strain SH1000 survived less well than its BSH-producing isogenic counterpart. Thus, the survival ofS. aureusunder oxidative stress is facilitated by BSH, possibly via a FosB-mediated mechanism, independently of its capability to produce staphyloxanthin.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2067 ◽  
Author(s):  
Mubasher Hussain ◽  
Biswojit Debnath ◽  
Muhammad Qasim ◽  
Bamisope Steve Bamisile ◽  
Waqar Islam ◽  
...  

The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae) is a very destructive crucifer-specialized pest that has resulted in significant crop losses worldwide. DBM is well attracted to glucosinolates (which act as fingerprints and essential for herbivores in host plant recognition) containing crucifers such as wintercress, Barbarea vulgaris (Brassicaceae) despite poor larval survival on it due to high-to-low concentration of saponins and generally to other plants in the genus Barbarea. B. vulgaris build up resistance against DBM and other herbivorous insects using glucosinulates which are used in plant defense. Aside glucosinolates, Barbarea genus also contains triterpenoid saponins, which are toxic to insects and act as feeding deterrents for plant specialist herbivores (such as DBM). Previous studies have found interesting relationship between the host plant and secondary metabolite contents, which indicate that attraction or resistance to specialist herbivore DBM, is due to higher concentrations of glucosinolates and saponins in younger leaves in contrast to the older leaves of Barbarea genus. As a response to this phenomenon, herbivores as DBM has developed a strategy of defense against these plant biochemicals. Because there is a lack of full knowledge in understanding bioactive molecules (such as saponins) role in plant defense against plant herbivores. Thus, in this review, we discuss the role of secondary plant metabolites in plant defense mechanisms against the specialist herbivores. In the future, trials by plant breeders could aim at transferring these bioactive molecules against herbivore to cash crops.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 751 ◽  
Author(s):  
Maria Jaramillo Flores

The interest in cacao flavanols is still growing, as bioactive compounds with potential benefits in the prevention of chronic diseases associated with inflammation, oxidative stress and metabolic disorders. Several analytical methodologies support that the flavanols in cacao-derived products can be absorbed, have bioactive properties, and thus can be responsible for their beneficial effects on human health. However, it must be considered that their biological actions and underlying molecular mechanisms will depend on the concentrations achieved in their target tissues. Based on the antioxidant properties of cacao flavanols, this review focuses on recent advances in research regarding their potential to improve metabolic syndrome risk factors. Additionally, it has included other secondary plant metabolites that have been investigated for their protective effects against metabolic syndrome. Studies using laboratory animals or human subjects represent strong available evidence for biological effects of cacao flavanols. Nevertheless, in vitro studies are also included to provide an overview of these phytochemical mechanisms of action. Further studies are needed to determine if the main cacao flavanols or their metabolites are responsible for the observed health benefits and which are their precise molecular mechanisms.


2012 ◽  
Vol 78 (8) ◽  
pp. 2896-2903 ◽  
Author(s):  
Hae-In Lee ◽  
Jin-Hwan Lee ◽  
Ki-Hun Park ◽  
Dipen Sangurdekar ◽  
Woo-Suk Chang

ABSTRACTFlavonoids, secondary plant metabolites which mainly have a polyphenolic structure, play an important role in plant-microbe communications for nitrogen-fixing symbiosis. Among 10 polyphenolic compounds isolated from soybean roots in our previous study, coumestrol showed the highest antioxidant activity. In this study, its effect on the soybean nodulation was tested. The soybean symbiontBradyrhizobium japonicumUSDA110 pretreated with 20 μM coumestrol enhanced soybean nodulation by increasing the number of nodules 1.7-fold compared to the control. We also tested the effect of coumestrol onB. japonicumbiofilm formation. At a concentration of 2 μM, coumestrol caused a higher degree of biofilm formation than two major soybean isoflavonoids, genistein and daidzein, although no biofilm formation was observed at a concentration of 20 μM each compound. A genome-wide transcriptional analysis was performed to obtain a comprehensive snapshot of theB. japonicumresponse to coumestrol. When the bacterium was incubated in 20 μM coumestrol for 24 h, a total of 371 genes (139 upregulated and 232 downregulated) were differentially expressed at a 2-fold cutoff with aqvalue of less than 5%. No commonnodgene induction was found in the microarray data. However, quantitative reverse transcription-PCR (qRT-PCR) data showed that incubation for 12 h resulted in a moderate induction (ca. 2-fold) ofnodD1andnodABC, indicating that soybean coumestrol is a weak inducer of commonnodgenes. In addition, disruption ofnfeD(bll4952) affected the soybean nodulation by an approximate 30% reduction in the average number of nodules.


Sign in / Sign up

Export Citation Format

Share Document