scholarly journals What are the Main Sensor Methods for Quantifying Pesticides in Agricultural Activities? A Review

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2659 ◽  
Author(s):  
Roy Zamora-Sequeira ◽  
Ricardo Starbird-Pérez ◽  
Oscar Rojas-Carillo ◽  
Seiling Vargas-Villalobos

In recent years, there has been an increase in pesticide use to improve crop production due to the growth of agricultural activities. Consequently, various pesticides have been present in the environment for an extended period of time. This review presents a general description of recent advances in the development of methods for the quantification of pesticides used in agricultural activities. Current advances focus on improving sensitivity and selectivity through the use of nanomaterials in both sensor assemblies and new biosensors. In this study, we summarize the electrochemical, optical, nano-colorimetric, piezoelectric, chemo-luminescent and fluorescent techniques related to the determination of agricultural pesticides. A brief description of each method and its applications, detection limit, purpose—which is to efficiently determine pesticides—cost and precision are considered. The main crops that are assessed in this study are bananas, although other fruits and vegetables contaminated with pesticides are also mentioned. While many studies have assessed biosensors for the determination of pesticides, the research in this area needs to be expanded to allow for a balance between agricultural activities and environmental protection.

2014 ◽  
Vol 24 (3) ◽  
pp. 394-402 ◽  
Author(s):  
Erin M. Silva ◽  
Rebecca Claypool ◽  
Jim Munsch ◽  
John Hendrickson ◽  
Paul Mitchell ◽  
...  

Organic sales continue to increase in the United States, particularly in the category of fruits and vegetables. Many organic vegetable producers are highly diversified in both crop production and marketing strategies, selling many different crops through several different market channels. With this level of operational complexity, determination of cost of production and calculation of breakeven prices for each crop in each market channels is extremely challenging. A spreadsheet-based tool called Veggie Compass was created to assist growers in tracking their operational costs and determining crop-specific and market-specific costs of production, breakeven prices, and gross profits. The spreadsheet uses farm-specific data regarding expenses, sales, and labor inputs in its calculations. A farmer can define the crops grown and markets sold to tailor the information specifically for their operations. Continued development in collaboration with farmers will improve the program and allow growers to perform analyses that enable them to set prices that more accurately reflect their respective operational costs.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Lukman Bola Abdulra’uf ◽  
Guan Huat Tan

AbstractThe various microextraction techniques have been developed in order to reduce sample preparation time, improve sensitivity and selectivity as well as to corroborate the recent advances in the development of highly sensitive and efficient analytical instrumentation. The current trend is aimed at the simplification and miniaturization of extraction steps, which has led to the combination of multi-step extraction and analytical analysis into single uninterrupted step. The method development involves the screening and subsequent optimization of both gas chromatography-mass spectrometry (GC-MS) and solid phase microextraction (SPME) parameters using multivariate experimental design, which has been shown to be efficient and effective with little experimental runs. The use of microextraction has been very effective in the analysis of contaminants in food, water and the environments to ensure they are safe and does not pose any health risk to human.


2013 ◽  
Vol 12 (7) ◽  
pp. 460-465
Author(s):  
Sameer Amereih ◽  
Zaher Barghouthi ◽  
Lamees Majjiad

A sensitive colorimetric determination of fluoride in drinking water has been developed using a polymeric zirconium complex of 5-(2-Carboxyphenylazo)-8-Hydroxyquinoline as fluoride reagents. The method allowed a reliable determination of fluoride in range of (0.0-1.5) mg L-1. The molar absorptivity of the complex formation is 7695 ± 27 L mol-1 cm-1 at 460 nm. The sensitivity, detection limit, quantitation limit, and percentage recovery for 1.0 mg L-1 fluoride for the proposed method were found to be 0.353 ± 0.013 μg mL-1, 0.1 mg L-1, 0.3 mg L-1, and 101.7 ± 4.1, respectively.


2020 ◽  
Vol 16 ◽  
Author(s):  
Ikko Mikami ◽  
Eri Shibayama ◽  
Kengo Takagi

Background: Determination of a reducing substance based on the reaction between Ce(IV) and a reducing substance and fluorescence detection of Ce(III) generated has been reported as a selective and sensitive method. However, this method could not be applied to the determination of alcohol due to the low reaction rate of alcohol and Ce(IV). Objective: We found that thiosulfate catalytically enhanced reaction of alcohols (such as, methanol, ethanol, and propanol) and Ce(IV). Utilizing this effect, we developed a new method for the determination of alcohols. Results: In the presence of thiosulfate, an increase in fluorescence intensity was detected by injecting alcohol at concentrations of several millimolar, whereas it was not observed even at the concentration of 10% v/v (2 M for ethanol) in the absence of thiosulfate. The optimum detection conditions were determined to be 4.0 mM Ce(IV) sulfate and 0.50 mM thiosulfate, and the detection limit (S/N = 3) of ethanol under these conditions was 1 mM. In the calibration curves, changes in the slope were observed when the alcohol concentrations were approximately 10–25 mM. Using a thiosulfate solution containing ethanol as the reaction solution, a calibration curve without any change in slope was obtained, although the concentration of ethanol at the detection limit increased. The alcohols in the liquor and fuel were successfully analyzed using the proposed detection method as a postcolumn reaction. Conclusion: This new alcohol detection method using a versatile fluorescence detector can be applied to the postcolumn reaction of HPLC omitting need of time-consuming pretreatment processes.


2020 ◽  
Vol 17 (1) ◽  
pp. 95-105
Author(s):  
Ramji Rathod ◽  
Faraat Ali ◽  
Amrish Chandra ◽  
Robin Kumar ◽  
Meenakshi Dahiya ◽  
...  

Background: A simple and sensitive Ultra Performance Liquid Chromatography-Mass Spectrometry method was developed and validated to measure the concentrations of Alogliptin (ALO), Linagliptin (LIN), Saxagliptin (SAX), and Sitagliptin (SIT) using Pioglitazone (PIO) as an internal standard. Methods: Chromatographic separation of six gliptins was achieved on a C-18 column (100×2.1 mm, 2.7 μm) using a mobile phase consisting of formic acid in water, 0.1%v/v: acetonitrile in gradient elution. Electrospray ionization (ESI) source was operated in the positive ion mode. Targeted MS/MS mode on a QTOF MS was used to quantify the drug utilizing the transitions of 340.1(m/z), 473.2 (m/z), 316.2 (m/z), 408.1 (m/z), and 357.1 (m/z) for ALO, LIN, SAX, SIT and PIO respectively. Results: As per ICH Q2R1 guidelines, a detailed validation of the method was carried out and the standard curves were found to be linear over the concentration ranges of 1516.0-4548.1 ng mL-1, 519.8- 1559.4 ng mL-1, 1531.4-4594.3 ng mL-1and 1519.6-4558.8 ng mL-1 for ALO, LIN, SAX and SIT respectively. Precision and accuracy results were within the acceptable limits. The mean recovery was found to be 98.8 _ 0.76 % (GEM), 102.2 _ 1.59 % (LIN), 95.3 _ 2.74 % (SAX) and 99.2 _ 1.75 % (SIT) respectively. Conclusions: The optimized validated UPLC QTOF-MS/MS method offered the advantage of shorter analytical times and higher sensitivity and selectivity. The optimized method is suitable for application in quantitative analysis of pharmaceutical dosage forms for QC laboratory.


1986 ◽  
Vol 51 (11) ◽  
pp. 2466-2472 ◽  
Author(s):  
Jiří Barek ◽  
Antonín Berka ◽  
Ludmila Dempírová ◽  
Jiří Zima

Conditions were found for the determination of 6-mercaptopurine (I) and 6-thioguanine (II) by TAST polarography, differential pulse polarography and fast-scan differential pulse voltammetry at a hanging mercury drop electrode. The detection limits were 10-6, 8 . 10-8, and 6 . 10-8 mol l-1, respectively. A further lowering of the detection limit to 2 . 10-8 mol l-1 was attained by preliminary accumulation of the determined substances at the surface of a hanging mercury drop.


Sign in / Sign up

Export Citation Format

Share Document