scholarly journals Passivating Surface States on Water Splitting Cuprous Oxide Photocatalyst with Bismuth Decoration

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4156
Author(s):  
Yuhong Huang ◽  
Hongkuan Yuan ◽  
Hong Chen

To enhance the visible light photocatalystic activity of Cu 2 O(100) surface, we performed first-principles calculations on the structural, electronic and optical properties of a bismuth (Bi)-decorated Cu 2 O(100) surface (Bi@Cu 2 O(100)). It is shown that the Bi prefer to be loaded to the hollow sites among four surface oxygen atoms and tend to individual dispersion instead of aggregating on the surface due to the lowest formation energy and larger distance between two Bi atoms at the surface than the Bi clusters; the coverage of around 0.25 monolayer Bi atoms can effectively eliminate the surface states and modify the band edges to satisfy the angular momentum selection rules for light excited transition of electrons, and the loaded Bi atoms contribute to the separation of photogenerated electron-holes. The relative positions between the band edges and the redox potentials are suitable for photocatalytic hydrogen production from the redox water, and moreover, the optical absorption spectrum indicates a positive response of the Bi 0 . 25 @Cu 2 O(100) to visible light, implying that the Bi 0 . 25 @Cu 2 O(100) is a promising visible light photocatalyst.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4739
Author(s):  
Shaoying Guo ◽  
Hao Lin ◽  
Jiapeng Hu ◽  
Zhongliang Su ◽  
Yinggan Zhang

Seeking candidate photocatalysts for photocatalytic water splitting, via visible light, is of great interest and importance. In this study, we have comprehensively explored the crystal structures, electronic properties, and optical absorbance of two-dimensional (2D) Sc2CT2 (T = F, Cl, Br) MXenes and their corresponding photocatalytic water splitting, under the visible-light region, by first-principles calculations. Herein, we have proposed that 2D Sc2CT2 MXenes can be fabricated from their layered bulk compounds, alternatively to the traditional chemical etching method. Creatively, we proposed Sc2CT2 (T = F, Br) as new materials; the band edge alignments of Sc2CF2 can be tuned to meet the water redox potentials at pH = 8.0. It is highlighted that Sc2CF2 shows outstanding optical spectra harvested under visible-light wavelength regions, and efficient separation of photo-induced electrons and holes in different zones. These present results provide eloquent evidence and open a new door on the photocatalysis applications of such novel semiconducting MXenes.


2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


2021 ◽  
Vol 10 (2) ◽  
pp. 59-63
Author(s):  
Hai Pham Viet ◽  
Anh Dao Thi Ngoc ◽  
Viet Nguyen Minh ◽  
Ha Tran Thi Viet ◽  
Dang Do Van ◽  
...  

In this study, direct Z–scheme heterostructure CoWO4/g-C3N4 was synthesized by a facile hydrothermal method. The structural, morphological properties of the prepared samples were characterised by XRD, SEM, UV–Vis and PL measurements. The as-obtained heterostructure CoWO4/g-C3N4 exhibited enhanced photocatalytic activities toward the degradation of Rhodamine B under visible light irradiation with 92% Rhodamine B removal after 80 minutes irritation, which exceeded pristine g-C3N4 and CoWO4. The enhanced photocatalytic performance ascribed to interfacial contact between g-C3N4 and CoWO4, thus further inhibiting the recombination of photogenerated electron/hole pairs. It is anticipated that the construction of Z–scheme heterostructure CoWO4/g-C3N4 is an effective strategy to develop high-performance photocatalysts for the degradation of organic pollutants in water.


2012 ◽  
Vol 116 (46) ◽  
pp. 24445-24448 ◽  
Author(s):  
Seiji Kawasaki ◽  
Kazuto Akagi ◽  
Kan Nakatsuji ◽  
Susumu Yamamoto ◽  
Iwao Matsuda ◽  
...  

2019 ◽  
Vol 33 (22) ◽  
pp. 1950266 ◽  
Author(s):  
Mingge Jin ◽  
Zhibing Li ◽  
Feng Huang ◽  
Weiliang Wang

There are conflicting understandings of the electronic and optical properties of CsPb2Br5. We investigated the electronic and optical properties of CsPb2Br5 with first-principles calculations. It is confirmed that CsPb2Br5 is a semiconductor with an indirect band gap of 3.08 eV at GGA/PBE level and 3.72 eV at the HSE06 hybrid functional level. The PBE results demonstrate that the inclusion of SOC slightly reduces the band gap. We calculate the optical absorbance/emission spectrum of CsPb2Br5. It is found the optical absorption edges locate at 360–380 nm, shorter than the wavelength of visible light. Our results support the experimental results of Li et al. [Chem. Commun. 52 (2016) 11296] and Zhang et al. [J. Mater. Chem. C 6 (2018) 446].


Sign in / Sign up

Export Citation Format

Share Document