scholarly journals Investigation on Adsorption and Decomposition Properties of CL-20/FOX-7 Molecules on MgH2(110) Surface by First-Principles

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2726
Author(s):  
Zhang Yang ◽  
Zhao Fengqi ◽  
Xu Siyu ◽  
Yang Fusheng ◽  
Yao Ergang ◽  
...  

Metal hydrides are regarded as promising hydrogen-supplying fuel for energetic materials while CL-20 (Hexanitrohexaazaisowurtzitane) and FOX-7 (1,1-Diamino-2,2-dinitroethylene) are typical principal components commonly used in energetic materials. Hence, it is interesting to explore the interactions between them for development of new energetic systems. In this paper, the adsorption and decomposition of CL-20 or FOX-7 molecules on the MgH2 (110) crystal surface were investigated by employing the First-Principles. In total, 18 adsorption configurations for CL-20/MgH2 (110) and 12 adsorption configurations for FOX-7/MgH2 (110) were considered. The geometric parameters for the configurations, adsorption energies, charge transfer, density of states, and decomposition mechanism were obtained and analyzed. In most of the configurations, chemical adsorption will occur. Moreover, the orientation of the nitro-group in CL-20 or FOX-7 with regard to the MgH2 (110) surface plays an important role on whether and how the energetic molecule decomposes. The adsorption and decomposition of CL-20 or FOX-7 on MgH2 could be attributed to the strong charge transfer between Mg atoms in the first layer of MgH2 (110) surface and oxygen as well as nitrogen atoms in the nitro-group of CL-20 or FOX-7 molecules.

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 676 ◽  
Author(s):  
Chuang Feng ◽  
Hongbo Qin ◽  
Daoguo Yang ◽  
Guoqi Zhang

CH2O is a common toxic gas molecule that can cause asthma and dermatitis in humans. In this study the adsorption behaviors of the CH2O adsorbed on the boron nitride (BN), aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), boron phosphide (BP), and phosphorus (P) monolayers were investigated using the first-principles method, and potential materials that could be used for detecting CH2O were identified. The gas adsorption energies, charge transfers and electronic properties of the gas adsorption systems have been calculated to study the gas adsorption behaviors of CH2O on these single-layer materials. The electronic characteristics of these materials, except for the BP monolayer, were observed to change after CH2O adsorption. For CH2O on the BN, GaN, BP, and P surfaces, the gas adsorption behaviors were considered to follow a physical trend, whereas CH2O was chemically adsorbed on the AlN and InN monolayers. Given their large gas adsorption energies and high charge transfers, the AlN, GaN, and InN monolayers are potential materials for CH2O detection using the charge transfer mechanism.


2016 ◽  
Vol 30 (25) ◽  
pp. 1650176 ◽  
Author(s):  
Shuying Zhong ◽  
Fanghua Ning ◽  
Fengya Rao ◽  
Xueling Lei ◽  
Musheng Wu ◽  
...  

Atomic adsorptions of N, C and O on silicene and molecular adsorptions of N2 and CO on silicene have been investigated using the density functional theory (DFT) calculations. For the atomic adsorptions, we find that the N atom has the most stable adsorption with a higher adsorption energy of 8.207 eV. For the molecular adsorptions, we find that the N2 molecule undergoes physisorption while the CO molecule undergoes chemisorption, the corresponding adsorption energies for N2 and CO are 0.085 and 0.255 eV, respectively. Therefore, silicene exhibits more reactivity towards the CO adsorption than the N2 adsorption. The differences of charge density and the integrated charge calculations suggest that the charge transfer for CO adsorption ([Formula: see text]0.015[Formula: see text]) is larger than that for N2 adsorption ([Formula: see text]0.005[Formula: see text]). This again supports that CO molecule is more active than N2 molecule when they are adsorbed onto silicene.


NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950131
Author(s):  
Qinqin Zhuang ◽  
Weihuang Yang ◽  
Wei Lin ◽  
Linxi Dong ◽  
Changjie Zhou

The adsorption of various gas molecules (H2, H2O, CO, NH3, NO and NO[Formula: see text] on monolayer GeSe were investigated by first-principles calculations. The most stable configurations, the adsorption energies, and the amounts of charge transfer were determined. Owing to the appropriate adsorption energies and the non-negligible charge transfers, monolayer GeSe could be a promising candidate as a sensor for NH3, CO, NO and NO2. According to the band structures of the H2O, CO, NH3, NO and NO2 adsorbed systems, the reductions of the bandgaps are caused by the orbital hybridizations between the gas molecules and the underlying GeSe. The partial densities of states reveal the degrees of these orbital hybridizations. The mechanisms of charge transfer are discussed in the light of both traditional and orbital mixing charge transfer theories. The charge transfer of the paramagnetic molecules NO and NO2 could be governed by both charge transfer mechanisms, while for the other gas molecules H2, H2O, CO and NH3, it was most likely determined by the mixing of the HOMO or LUMO with the GeSe orbitals.


2017 ◽  
Vol 7 (5) ◽  
pp. 1040-1044 ◽  
Author(s):  
M. C. S. Escaño ◽  
H. Kasai

A novel mechanism of oxygen reaction on a metal surface beyond the present charge transfer or hybridization mechanism, spin-orientation dependence via a coupling mechanism due to the finite spin moment of O2 at the transition state, is obtained using a combination of spin density functional theory (SDFT) and constrained DFT.


Sign in / Sign up

Export Citation Format

Share Document