scholarly journals Role of Lipid-Based and Polymer-Based Non-Viral Vectors in Nucleic Acid Delivery for Next-Generation Gene Therapy

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2866 ◽  
Author(s):  
Aniket Wahane ◽  
Akaash Waghmode ◽  
Alexander Kapphahn ◽  
Karishma Dhuri ◽  
Anisha Gupta ◽  
...  

The field of gene therapy has experienced an insurgence of attention for its widespread ability to regulate gene expression by targeting genomic DNA, messenger RNA, microRNA, and short-interfering RNA for treating malignant and non-malignant disorders. Numerous nucleic acid analogs have been developed to target coding or non-coding sequences of the human genome for gene regulation. However, broader clinical applications of nucleic acid analogs have been limited due to their poor cell or organ-specific delivery. To resolve these issues, non-viral vectors based on nanoparticles, liposomes, and polyplexes have been developed to date. This review is centered on non-viral vectors mainly comprising of cationic lipids and polymers for nucleic acid-based delivery for numerous gene therapy-based applications.

RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25398-25405 ◽  
Author(s):  
Ankita A. Hiwale ◽  
Chandrashekhar Voshavar ◽  
Priya Dharmalingam ◽  
Ashish Dhayani ◽  
Rajesh Mukthavaram ◽  
...  

Asymmetric hydrocarbon chains influence the efficiency of cationic lipids based liposomes in nucleic acid delivery. A systematic investigation of role of asymmetry in transfection efficiency.


RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 77841-77848 ◽  
Author(s):  
Rakeshchandra R. Meka ◽  
Sudhakar Godeshala ◽  
Srujan Marepally ◽  
Ketan Thorat ◽  
Hari Krishna Reddy Rachamalla ◽  
...  

Cationic lipids have been extensively studied for their ability to complex with nucleic acids to condense and consequently deliver them into the cells.


2020 ◽  
Vol 21 (6) ◽  
pp. 2244 ◽  
Author(s):  
Marco Hoffmann ◽  
Nils Hersch ◽  
Sven Gerlach ◽  
Georg Dreissen ◽  
Ronald Springer ◽  
...  

Highly efficient, biocompatible, and fast nucleic acid delivery methods are essential for biomedical applications and research. At present, two main strategies are used to this end. In non-viral transfection liposome- or polymer-based formulations are used to transfer cargo into cells via endocytosis, whereas viral carriers enable direct nucleic acid delivery into the cell cytoplasm. Here, we introduce a new generation of liposomes for nucleic acid delivery, which immediately fuse with the cellular plasma membrane upon contact to transfer the functional nucleic acid directly into the cell cytoplasm. For maximum fusion efficiency combined with high cargo transfer, nucleic acids had to be complexed and partially neutralized before incorporation into fusogenic liposomes. Among the various neutralization agents tested, small, linear, and positively charged polymers yielded the best complex properties. Systematic variation of liposomal composition and nucleic acid complexation identified surface charge as well as particle size as essential parameters for cargo-liposome interaction and subsequent fusion induction. Optimized protocols were tested for the efficient transfer of different kinds of nucleic acids like plasmid DNA, messenger RNA, and short-interfering RNA into various mammalian cells in culture and into primary tissues.


2006 ◽  
Vol 50 (8) ◽  
pp. 2797-2805 ◽  
Author(s):  
Jingsong Zhu ◽  
Paul W. Luther ◽  
Qixin Leng ◽  
A. James Mixson

ABSTRACT A family of histidine-rich peptides, histatins, is secreted by the parotid gland in mammals and exhibits marked inhibitory activity against a number of Candida species. We were particularly interested in the mechanism by which histidine-rich peptides inhibit fungal growth, because our laboratory has synthesized a variety of such peptides for drug and nucleic acid delivery. In contrast to naturally occurring peptides that are linear, peptides made on synthesizers can be varied with respect to their degrees of branching. Using this technology, we explored whether histidine-lysine (HK) polymers of different complexities and degrees of branching affect the growth of several species of Candida. Polymers with higher degrees of branching were progressively more effective against Candida albicans, with the four-branched polymer, H2K4b, most effective. Furthermore, H2K4b accumulated efficiently in C. albicans, which may indicate its ability to transport other antifungal agents intracellularly. Although H2K4b had greater antifungal activity than histatin 5, their mechanisms were similar. Toxicity in C. albicans induced by histatin 5 or branched HK peptides was markedly reduced by 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate, an inhibitor of anion channels. We also determined that bafilomycin A1, an inhibitor of endosomal acidification, significantly decreased the antifungal activity of H2K4b. This suggests that the pH-buffering and subsequent endosomal-disrupting properties of histidine-rich peptides have a role in their antifungal activity. Moreover, the ability of the histidine component of these peptides to disrupt endosomes, which allows their escape from the lysosomal pathway, may explain why these peptides are both effective antifungal agents and nucleic acid delivery carriers.


2021 ◽  
Author(s):  
Moataz Dowaidar

Nucleic acid-based therapeutics such as siRNA and miRNA employ the silencing capabilities of the RNAi mechanism to affect the expression of one gene or several genes in target cells. Nucleic acid-based therapies enable accurate, targeted administration and overcoming drug resistance in diverse cancer cells. Several studies have shown that they can be utilized alongside pharmacological therapy to increase the efficacy of existing therapies. In addition, nucleic acid-based therapies have the potential to widen the spectrum of druggable targets for a range of diseases and emerge as a novel therapeutic technique for treating a number of diseases that are today untreatable. Nucleic acids are dependent on their effective distribution to target cells, which need correct complexation and encapsulation in a delivery mechanism. Although nucleic acids exist in a variety of forms and sizes, their physical and chemical commonality allow them to be loaded into a wide range of delivery vehicles. The primary biomaterials used to encapsulate genetic components were cationic lipids and polymers. Furthermore, the experiments focused particularly on effective transfection in target cells.Recent breakthroughs in NP-based RNA therapeutics have spurred a flood of clinical research, facing many challenges. In vivo, pharmacokinetics of different RNA-based medications must be researched to establish the viability and therapeutic potential of nucleic acid-based therapeutics. The U.S. Food and Drug Administration recently authorized many NP-based gene therapy. In 2019, Novartis authorized Zolgensma (onasemnogene abeparvovec-xioi) to treat spinal muscle atrophy. The first clinical research employing siRNA began in 2004 and is considered a milestone in nucleic acid-based drug development. Thirty clinical investigations have subsequently been completed. In 2018, the US FDA cleared Onpattro (Patisiran, Alnylam Pharmaceuticals) for the treatment of polyneuropathy caused by transthyretin amyloidosis.Several new generations of nucleic acid compositions employing polymer nanoparticles or liposomes are presently undergoing clinical testing. If allowed, the debut of nucleic acid-based treatments would represent a watershed event in immunotherapy. Advances in the design and development of biocompatible nanomaterials would allow us to overcome the above-mentioned problems and so show the potential to deliver nucleic acids in the treatment of a number of illnesses.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1219
Author(s):  
Lara S. Costard ◽  
Domhnall C. Kelly ◽  
Rachael N. Power ◽  
Christopher Hobbs ◽  
Sonia Jaskaniec ◽  
...  

Nonviral vectors offer a safe alternative to viral vectors for gene therapy applications, albeit typically exhibiting lower transfection efficiencies. As a result, there remains a significant need for the development of a nonviral delivery system with low cytotoxicity and high transfection efficacy as a tool for safe and transient gene delivery. This study assesses MgAl-NO3 layered double hydroxide (LDH) as a nonviral vector to deliver nucleic acids (pDNA, miRNA and siRNA) to mesenchymal stromal cells (MSCs) in 2D culture and using a 3D tissue engineering scaffold approach. Nanoparticles were formulated by complexing LDH with pDNA, microRNA (miRNA) mimics and inhibitors, and siRNA at varying mass ratios of LDH:nucleic acid. In 2D monolayer, pDNA delivery demonstrated significant cytotoxicity issues, and low cellular transfection was deemed to be a result of the poor physicochemical properties of the LDH–pDNA nanoparticles. However, the lower mass ratios required to successfully complex with miRNA and siRNA cargo allowed for efficient delivery to MSCs. Furthermore, incorporation of LDH–miRNA nanoparticles into collagen-nanohydroxyapatite scaffolds resulted in successful overexpression of miRNA in MSCs, demonstrating the development of an efficacious miRNA delivery platform for gene therapy applications in regenerative medicine.


2019 ◽  
Vol 20 (21) ◽  
pp. 5491 ◽  
Author(s):  
Patil ◽  
Gao ◽  
Lin ◽  
Li ◽  
Dang ◽  
...  

Gene therapy is manipulation in/of gene expression in specific cells/tissue to treat diseases. This manipulation is carried out by introducing exogenous nucleic acids, such as DNA or RNA, into the cell. Because of their negative charge and considerable larger size, the delivery of these molecules, in general, should be mediated by gene vectors. Non-viral vectors, as promising delivery systems, have received considerable attention due to their low cytotoxicity and non-immunogenicity. As research continued, more and more functional non-viral vectors have emerged. They not only have the ability to deliver a gene into the cells but also have other functions, such as the performance of fluorescence imaging, which aids in monitoring their progress, targeted delivery, and biodegradation. Recently, many reviews related to non-viral vectors, such as polymers and cationic lipids, have been reported. However, there are few reviews regarding functional non-viral vectors. This review summarizes the common functional non-viral vectors developed in the last ten years and their potential applications in the future. The transfection efficiency and the transport mechanism of these materials were also discussed in detail. We hope that this review can help researchers design more new high-efficiency and low-toxicity multifunctional non-viral vectors, and further accelerate the progress of gene therapy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kaido Kurrikoff ◽  
Krista Freimann ◽  
Kadi-Liis Veiman ◽  
Elin Madli Peets ◽  
Andres Piirsoo ◽  
...  

AbstractWe have previously developed efficient peptide-based nucleic acid delivery vectors PF14 and NF55, where we have shown that these vectors preferentially transfect lung tissue upon systemic administration with the nucleic acid. In the current work, we have explored the utilization and potential of these vectors for the lung-targeted gene therapy. Accordingly, we assessed the efficacy of these peptides in (i) two different lung disease models – acute lung inflammation and asthma in mice and (ii) using two different nucleic acid cargos – siRNA and pDNA encoding shRNA. Using RNAi against cytokine TNFα, we showed efficient anti-inflammatory effects in both disease models and observed decreased disease symptoms. Our results highlight the potential of our transfection vectors for lung gene therapy.


2017 ◽  
Vol 5 (28) ◽  
pp. 5597-5607 ◽  
Author(s):  
Gerile Gerile ◽  
Tsogzolmaa Ganbold ◽  
Yizheng Li ◽  
Huricha Baigude

Intracellular delivery of genetic material is a potentially powerful therapeutic approach for the treatment of genetic diseases.


Sign in / Sign up

Export Citation Format

Share Document