scholarly journals Purification of Aqueous Media by Biochars: Feedstock Type Effect on Silver Nanoparticles Removal

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2930 ◽  
Author(s):  
Agnieszka Tomczyk ◽  
Katarzyna Szewczuk-Karpisz ◽  
Zofia Sokołowska ◽  
Milena Kercheva ◽  
Emil Dimitrov

Due to the harmful effects of nanoparticles in the environment, their effective removal from aqueous media is of great importance. This paper described the research on the silver nanoparticles (Ag-NPs) sorption on biochars obtained from different feedstock types. The sorbents were produced through pyrolysis (double-barrel method) of the vineyard (BV), paulownia tree (BP), and tobacco (BT). BV exhibited the highest specific surface area, porosity, value of variable surface charge, and content of surface acidic functional groups among the used biochars. The pseudo-second order model best described the obtained adsorption kinetics, whereas the Freundlich model accounted for the registered adsorption data. The Ag-NPs removal was highly efficient in the case of BV, especially in the nanoparticle concentration range 50–500 mg/L. Thus, this biochar can be considered as an ecofriendly, effective, low-cost organic adsorbent, potentially used in the aqueous media purification.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
F. Granados-Correa ◽  
J. Vilchis-Granados ◽  
M. Jiménez-Reyes ◽  
L. A. Quiroz-Granados

The hydroxyapatite was successfully synthesized, characterized, and used as an alternative low-cost adsorbent material to study the adsorption behavior of La(III) and Eu(III) ions from nitrate aqueous solutions as a function of contact time, initial metal ion concentration, pH, and temperature by using a bath technique. The kinetic data correspond very well to the pseudo-second-order equation, and in both cases the uptake was affected by intraparticle diffusion. Isotherm adsorption data were well fitted by the Freundlich model equation with1/n>1, indicating a multilayer and cooperative-type adsorption. Thermodynamic parameters for the adsorption systems were determinated at 293, 303, 313, and 323 K. These parameters show that adsorptions of La(III) and Eu(III) ions on hydroxyapatite are endothermic and spontaneous processes. The adsorption was found to follow the order Eu(III) > La(III) and is dependent on ion concentration, pH, and temperature.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1786 ◽  
Author(s):  
Liangjun Xia ◽  
Chen Li ◽  
Sijie Zhou ◽  
Zhuan Fu ◽  
Yun Wang ◽  
...  

As a natural polymer, leather and its associated industries are known to be the leading economic sector in many countries. However, the huge amounts of leather waste generated from the leather industry causes severe environmental pollution. Herein, cow leather (CL) powders were prepared using a homemade machine and used as a low-cost adsorbent for the effective removal of reactive dyes from wastewater. The as-prepared CL powders exhibited dot-like, rod-like, and fiber-like morphologies. A Fourier transform infrared analysis and an x-ray diffraction analysis demonstrated that the CL powders retained the main structure of the protein contained in it. In addition, an improvement in thermal stability was also observed for the CL powders. Dye adsorption experiments indicate that the CL powders showed the highly effective removal of C.I. Reactive Red 120 (RR120), C.I. Reactive Yellow 127 (RY127), and C.I. Reactive Blue 222 (RB222) with the adsorption capacity of 167.0, 178.9, and 129.6 mg·g−1, respectively. The Langmuir, pseudo-second order, and intraparticle diffusion models could well depict the adsorption equilibrium and kinetics of CL powders toward the investigated reactive dyes. The as-prepared CL powders can be used as a potential adsorbent in the treatment of dye contaminated wastewater. Future studies will mainly focus on the application of the adsorbed CL powders for the pigment printing of textile materials.


2019 ◽  
Vol 80 (5) ◽  
pp. 884-891
Author(s):  
Daying Chen ◽  
Nasi Tu ◽  
Changkun Si ◽  
Meilin Yin ◽  
Xiaohui Wang

Abstract Mesoporous TiO2 has been prepared by a brief and simple sol–gel processing and applied for the removal of Cu(II) from aqueous solution. The adsorption behavior of mesoporous TiO2 for Cu(II) was investigated using batch experiments. Results showed that the pseudo-second-order model and Langmuir isotherm were more accurate to describe the kinetics process and adsorption isotherm. Mesoporous TiO2 adsorbent displayed excellent Cu(II) adsorption efficiency (195.52mg g−1). The thermodynamic parameters showed that the adsorption was spontaneous and endothermic. It was also found that mesoporous TiO2 could be used at least seven times without obvious loss of its original adsorption efficiency. Therefore, the obtained mesoporous TiO2 could be employed as an effective and low-cost adsorbent for removal of Cu(II) from contaminated effluents.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Joshua N. Edokpayi ◽  
Samson O. Alayande ◽  
Ahmed Adetoro ◽  
John O. Odiyo

In this study, the potential for pulverized raw macadamia nut shell (MNS) for the sequestration of methylene blue from aqueous media was assessed. The sorbent was characterized using scanning electron microscopy for surface morphology, functional group analysis was performed with a Fourier-transform infrared spectrometer (FT-IR), and Brunauer–Emmett–Teller (BET) isotherm was used for surface area elucidation. The effects of contact time, sorbent dosage, particle size, pH, and change in a solution matrix were studied. Equilibrium data were fitted using Temkin, Langmuir, and Freundlich adsorption isotherm models. The sorption kinetics was studied using the Lagergren pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The feasibility of the study was established from the thermodynamic studies. A surface area of 2.763 m2/g was obtained. The equilibrium and kinetics of sorption was best described by the Langmuir and the pseudo-second-order models, respectively. The sorption process was spontaneous (−ΔG0=28.72−31.77 kJ/mol) and endothermic in nature (ΔH0=17.45 kJ/mol). The positive value of ΔS0 (0.15 kJ/molK) implies increased randomness of the sorbate molecules at the surface of the sorbent. This study presents sustainable management of wastewater using MNS as a potential low-cost sorbent for dye decontamination from aqueous solution.


2013 ◽  
Vol 15 (3) ◽  
pp. 35-41 ◽  
Author(s):  
P. Senthil Kumar

Abstract The surface modified Strychnos potatorum seeds (SMSP), an agricultural waste has been developed into an effective adsorbent for the removal of Zn(II) ions from aqueous environment. The Freundlich model provided a better fit with the experimental data than the Langmuir model as revealed by a high coefficient of determination values and low error values. The kinetics data fitted well into the pseudo-second order model with the coefficient of determination values greater than 0.99. The influence of particle diffusion and film diffusion in the adsorption process was tested by fitting the experimental data with intraparticle diffusion, Boyd kinetic and Shrinking core models. Desorption experiments were conducted to explore the feasibility of regenerating the spent adsorbent and the adsorbed Zn(II) ions from spent SMSP was desorbed using 0.3 M HCl with the efficiency of 93.58%. The results of the present study indicates that the SMSP can be successfully employed for the removal of Zn(II) ions from aqueous environment.


2021 ◽  
Author(s):  
Manal F. abou Taleb ◽  
Faten Ismail Abou El Fadl ◽  
Hanan Albalwi ◽  
Mohamed M. Ibrahim

Abstract Silver nanoparticles (Ag NPs) are widely used as engineered nanomaterials in many advanced nanotechnologies, due to their versatile, easy and cheap preparations combined with peculiar chemical-physical properties. Their increased production and integration in environmental applications including water treatment raise concerns for their impact on humans and the environment. In this study, gamma radiation dose of 20 kGy was utilized to induce the synthesis silver nanoparticles (Ag NPs) in the alginate micro beads to prepare calcium Alginate/Ag (Ca-ALG/Ag) nanocomposite beads. These beads were then used to degrade toxic basic dyes in waste water. Initially, Ca-ALG /Ag nanocomposite beads were synthesized and characterized using Ultra Violet-visible spectrum (UV-Vis), Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) and Transmission Electron Microscope (TEM) for confirming the formation of Ag NPs and morphological study. The catalytic efficiency of the resulting Ca-ALG/Ag nanocomposite beads is evaluated for the degradation of dyes such sandocryl blue dye in the presence of NaBH4. The catalytic degradation of sandocryl blue dye was very fast in the present conditions: 0.1 g of catalyst 5 ml NaBH4 and the optimum time for complete reduction was 30 min. The pseudo-first order, pseudo second order and intra particle diffusion model used to evaluate the kinetic models and the mechanism of the degradation. Results showed that the degradation kinetics best fit the pseudo-second-order model and Langmuir isotherm model. The Biopolymer-based nanocomposite beads of calcium alginate, and Ag NPs can be applied to reduce dyestuff, where it is economically viable and environmentally friendly.


2021 ◽  
Author(s):  
SELCAN KARAKUŞ ◽  
Nevin Taşaltın ◽  
Cihat Taşaltın ◽  
Nuray Bekoz Üllen

Abstract Green and low-cost synthesis strategy for ultrasonic preparation of polymer blend matrix based silver nanoparticles (Ag NPs) and the development of rapid and high sensitive detection route have a great attention in biomedical applications. Therefore, in this study, we investigated the hydrogen peroxide detection performance of Konjac gum (KG)/PEG-Ag NPs. The KG/PEG-Ag NPs was synthesized via an ultrasonic process and characterized by different techniques such as ultraviolet–visible spectroscopy (UV–Vis), Fourier-Transform Infrared spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). Furthermore, we determined the experimental optimization on the effect of the rheological parameters of nanostructure with the highest correlation constant (R 2 : 0.989-0.996), and the intrinsic viscosity (14.71-26.77 dl/g). To provide the miscible polymer blends and homogeneous dispersion of the nanostructure, we compared the rheological parameters with the experimental results. The response time was less than 5 s and the lower limit of detection was 0.071 μM. This novel highly sensitive, rapid, and naked-eye colorimetric biosensor based Ag NPs which are prepared ultrasonic manufacturing approach, opens up a green approach of development facile and rapid detection of hydrogen peroxide in practical biomedical applications.


2021 ◽  
Vol 15 (2) ◽  
pp. 123-131
Author(s):  
Muhammad Naswir ◽  
Jalius Jalius ◽  
Desfaur Natalia ◽  
Susila Arita ◽  
Yudha Gusti Wibowo

Mercury is a hazardous element because of its toxicity and harmful effects on human health. Various traditional and low-cost methods have been developed to remove mercury from wastewater. This study used local raw material as an alternative adsorbent to treat mercury-contaminated wastewater. Activated bentonite was prepared using different chemical activators (H3PO4, HCl, and ZnCl2) in various concentrations. Then, it was dried at 200°C for an hour. The materials were characterized by SEM-EDS. Its percent removal and isotherm models were analyzed. In this study, the most effective activator was H3PO4 and the experimental data matched the Freundlich model. 


2016 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Arenst Andreas Arie ◽  
Emerentina Maerilla Puspaningrum ◽  
Henky Muljana

<p class="Abstract">Low-cost and environmental friendly activated carbons were synthesized from orange peel waste by carbonization followed by activation process using supercritical carbon dioxide. The carbonization process of orange peel waste was conducted in the electrical furnace at temperature of 800 °C for 2 h. Activation process of the impregnated orange peel was carried out in the tubular furnace for 1 h at activation temperature of 140 °C and pressure variation of 80, 125 and 170 bar. Activated carbon with highest surface area of 262.173 m<sup>2</sup>/g was obtained by co<sub>2</sub> pressure of 125 bar. The activated carbons were then utilized as adsorbents for removal of methylene blue (MB) from aqueous solution. The batch adsorption study was carried out by varying the initial concentration of mb solution (2, 4, 6, 8 and 10 ppm). Experimental results showed that the adsorption kinetic of mb fitted the pseudo-second-order rate equation, where as for the adsorption isotherm model followed two models i.e. The dubinin- radushkevich and freundlich model. The adsorption mechanism was found to be governed by the intraparticle and surface diffusion mechanism.</p>


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1557 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Govar Hussein ◽  
M. A. Brza ◽  
Sewara J. Mohammed ◽  
R. T. Abdulwahid ◽  
...  

Interconnected spherical metallic silver nanoparticles (Ag NPs) were synthesized in the current study using a green chemistry method. The reduction of silver ions to Ag NPs was carried out with low-cost and eco-friendly quince leaves. For the first time, it was confirmed that the extract solution of quince leaves could be used to perform green production of Ag NPs. Fourier transform infrared spectroscopy (FTIR) was conducted to identify the potential biomolecules that were involved in the Ag NPs. The results depicted that the biosynthesis of Ag NPs through the extract solution of quince leaf was a low-cost, clean, and safe method, which did not make use of any contaminated element and hence, had no undesirable effects. The majority of the peaks in the FTIR spectrum of quince leaf extracts also emerged in the FTIR spectrum of Ag NPs but they were found to be of less severe intensity. The silver ion reduction was elaborated in detail on the basis of the FTIR outcomes. In addition, through X-ray diffraction (XRD) analysis, the Ag NPs were also confirmed to be crystalline in type, owing to the appearance of distinct peaks related to the Ag NPs. The creation of Ag NPs was furthermore confirmed by using absorption spectrum, in which a localized surface plasmon resonance (LSPR) peak at 480 nm was observed. The LSPR peak achieved in the present work was found to be of great interest compared to those reported in literature. Field emission scanning electron microscopy (FESEM) images were used to provide the morphology and grain size of Ag NPs. It was shown from the FESEM images that the Ag NPs had interconnected spherical morphology.


Sign in / Sign up

Export Citation Format

Share Document