scholarly journals Rotational Spectroscopy Meets Quantum Chemistry for Analyzing Substituent Effects on Non-Covalent Interactions: The Case of the Trifluoroacetophenone-Water Complex

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4899
Author(s):  
Juncheng Lei ◽  
Silvia Alessandrini ◽  
Junhua Chen ◽  
Yang Zheng ◽  
Lorenzo Spada ◽  
...  

The most stable isomer of the 1:1 complex formed by 2,2,2-trifluoroacetophenone and water has been characterized by combining rotational spectroscopy in supersonic expansion and state-of-the-art quantum-chemical computations. In the observed isomer, water plays the double role of proton donor and acceptor, thus forming a seven-membered ring with 2,2,2-trifluoroacetophenone. Accurate intermolecular parameters featuring one classical O-H···O hydrogen bond and one weak C-H···O hydrogen bond have been determined by means of a semi-experimental approach for equilibrium structure. Furthermore, insights on the nature of the established non-covalent interactions have been unveiled by means of different bond analyses. The comparison with the analogous complex formed by acetophenone with water points out the remarkable role played by fluorine atoms in tuning non-covalent interactions.

2019 ◽  
Vol 100 (1) ◽  
pp. 191-202
Author(s):  
Anthony Legon

AbstractThis article is a personal, chronological account of experimental work carried out on the hydrogen bond, the halogen bond and other non-covalent interactions by my research group using (mainly) rotational spectroscopy since 1974. It is not intended to be comprehensive, and therefore does not include contributions made by many groups in the last 40 years or so.


Author(s):  
Mhamad Chrayteh ◽  
Ecaterina Burevschi ◽  
Donatella Loru ◽  
Therese R. Huet ◽  
Pascal Dréan ◽  
...  

The hydrates of the monoterpenoid fenchone (C10H16O).(H2O)n (n=1,2,3) were investigated both by computational chemistry and microwave spectroscopy. Two monohydrates, three dihydrates and for the first time three trihydrates have been...


2021 ◽  
Vol 45 (4) ◽  
pp. 2249-2263
Author(s):  
Pretam Kumar ◽  
Snehasis Banerjee ◽  
Anu Radha ◽  
Tahira Firdoos ◽  
Subash Chandra Sahoo ◽  
...  

The H-bond, spodium bond and CH⋯π interactions playing an important role in the supramolecular organization of two mercury(ii) diphenyldithiophosphate complexes have been discussed.


Author(s):  
Sascha Jähnigen ◽  
Daniel Sebastiani ◽  
Rodolphe Vuilleumier

We present a computational study of vibrational circular dichroism (VCD) in solutions of (S)-lactic acid, relying on ab initio molecular dynamics (AIMD) and full solvation with bulk water. We discuss...


2018 ◽  
Author(s):  
Alister T. Boags ◽  
Firdaus Samsudin ◽  
Syma Khalid

SUMMARYWe present a molecular modeling and simulation study of the of the E. coli cell envelope, with a particular focus on the role of TolR, a native protein of the E. coli inner membrane in interactions with the cell wall. TolR has been proposed to bind to peptidoglycan, but the only structure of this protein thus far is in a conformation in which the putative peptidoglycan binding domain is not accessible. We show that a model of the extended conformation of the protein in which this domain is exposed, binds peptidoglycan largely through electrostatic interactions. We show that non-covalent interactions of TolR and OmpA with the cell wall, from the inner membrane and outer membrane sides respectively, maintain the position of the cell wall even in the absence of Braun’s lipoprotein. When OmpA is truncated to remove the peptidoglycan binding domain, TolR is able to pull the cell wall down towards the inner membrane. The charged residues that mediate the cell-wall interactions of TolR in our simulations, are conserved across a number of species of Gram-negative bacteria.


2016 ◽  
Vol 12 ◽  
pp. 2834-2848 ◽  
Author(s):  
Pavel Nagorny ◽  
Zhankui Sun

Hydrogen bond donor catalysis represents a rapidly growing subfield of organocatalysis. While traditional hydrogen bond donors containing N–H and O–H moieties have been effectively used for electrophile activation, activation based on other types of non-covalent interactions is less common. This mini review highlights recent progress in developing and exploring new organic catalysts for electrophile activation through the formation of C–H hydrogen bonds and C–X halogen bonds.


2017 ◽  
Vol 2 (3) ◽  
pp. 253-262 ◽  
Author(s):  
A. Pérez-Guardiola ◽  
A. J. Pérez-Jiménez ◽  
J. C. Sancho-García

We theoretically study, by means of dispersion-corrected and cost-effective methods, the strength of non-covalent interactions between cyclic organic nanorings and nano-sized graphene flakes acting as substrates.


Sign in / Sign up

Export Citation Format

Share Document