scholarly journals Advances in Cryochemistry: Mechanisms, Reactions and Applications

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 750
Author(s):  
Lu-Yan An ◽  
Zhen Dai ◽  
Bin Di ◽  
Li-Li Xu

It is counterintuitive that chemical reactions can be accelerated by freezing, but this amazing phenomenon was discovered as early as the 1960s. In frozen systems, the increase in reaction rate is caused by various mechanisms and the freeze concentration effect is the main reason for the observed acceleration. Some accelerated reactions have great application value in the chemistry synthesis and environmental fields; at the same time, certain reactions accelerated at low temperature during the storage of food, medicine, and biological products should cause concern. The study of reactions accelerated by freezing will overturn common sense and provide a new strategy for researchers in the chemistry field. In this review, we mainly introduce various mechanisms for accelerating reactions induced by freezing and summarize a variety of accelerated cryochemical reactions and their applications.

2008 ◽  
Vol 607 ◽  
pp. 260-262
Author(s):  
Sergey V. Stepanov ◽  
Dmitry Zvezhinskiy ◽  
Gilles Duplâtre ◽  
Vsevolod Byakov ◽  
V.S. Subrahmanyam

A new strategy for the treatment of positron annihilation lifetime (PAL) spectra in viscous liquids is proposed, enabling to extract values of the Ps reaction rate constants with intratrack radiolytic products as well as parameters of the free volume distribution in viscous media.


2017 ◽  
Vol 5 (22) ◽  
pp. 11071-11077 ◽  
Author(s):  
Jie Cao ◽  
Hui Yu ◽  
Shuang Zhou ◽  
Minchao Qin ◽  
Tsz-Ki Lau ◽  
...  

A new strategy is introduced to fabricate NiOxfilms over perovskite layers to achieve highly stable perovskite solar cells.


Author(s):  
Maikel Ballester

Rate coefficients of bi-molecular chemical reactions are fundamental for kinetic models. The rate coefficient dependence on temperature is commonly extracted from the analyses of the reaction minimum energy path. However, a full dimension study of the same reaction may suggest a different asymptotic low-temperature limit in the rate constant than the obtained from the energetic profile.


2021 ◽  
Vol 33 (6) ◽  
pp. 2279-2300
Author(s):  
Bettina Detmann

AbstractFirst, different porous media theories are presented. Some approaches are based on the classical mixture theory for fluids introduced in the 1960s by Truesdell and Coworkers. One of the first researchers who extended the theory to porous media (thus mixtures containing at least one solid constituent) and also accounting for chemical reactions was Bowen. Another important branch of porous media theory goes back to Biot. In the beginning, he dealt with classical geotechnical problems and set up his model empirically. Mathematicians often use reaction–diffusion equations which are limited in comparison with continuum models by several restrictive assumptions and very often only applicable to special problems. In this paper, the focus lies on approaches based on the mixture theory which incorporate chemical reactions. Different strategies to describe the chemical potential for mixtures are presented, and different opinions about the exploitation of the second law of thermodynamics for mixtures are put forward. Finally, several works of different types including chemical reactions in porous media are summarized.


1938 ◽  
Vol 11 (1) ◽  
pp. 107-130
Author(s):  
W. K. Lewis ◽  
Lombard Squires ◽  
Robert D. Nutting

Abstract THAT vulcanization of rubber with sulfur always involves a chemical reaction consisting in the addition of sulfur to the double bonds of the rubber molecule has been conclusively established (18, 28). The facts indicate that this addition of sulfur to rubber is an irreversible reaction (31). The temperature coefficient of the reaction is high, increasing about 2.65 fold per 10° C. at ordinary curing temperatures (31). Furthermore, the reaction is apparently exothermic (4, 24). It is noteworthy that catalysts are apparently necessary, since synthetic rubbers prepared from pure materials add sulfur slowly, if at all. The proteins and perhaps the resins in natural rubber undoubtedly serve as accelerators. The curves for combined sulfur vs. time of cure for typical mixes are shown in Figures 1 and 2. Figure 1 is taken from the data of Kratz and Flower (16); the composition and temperature of cure for this mix are shown in Cranor's Table I (9). Figure 2, curve 1, is from Table I of Eaton and Day (10), and curve 2 from data obtained in this laboratory (27, Table I). Superficial inspection of these curves shows extraordinary divergence of type. Figure 1 is a typical fadeaway curve, characteristic of most chemical reactions, where the reaction rate decreases with decreasing concentration of the reacting materials. Curve 1, Figure 2, is an entirely different type, where the rate of sulfur addition is constant until nearly 70 per cent of the initial sulfur has reacted. Curve 2, Figure 2, shows even more complex behavior. Again the rate is constant in the initial portions of the cure. However, following this period, the rate increases markedly but later falls off, approaching zero, to give an S-shaped eurve.


Author(s):  
Matt Richards ◽  
Arkal Shenoy

Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850°C to 950°C can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. Electricity can also be used to split water, using conventional, low-temperature electrolysis (LTE). An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. In this paper we investigate the coupling of the Modular Helium Reactor (MHR) to the SI process and HTE. These concepts are referred to as the H2-MHR. Optimization of the MHR core design to produce higher coolant outlet temperatures is also discussed.


Sign in / Sign up

Export Citation Format

Share Document