scholarly journals Green Synthesis of Nickel Oxide Nanoparticles from Berberis balochistanica Stem for Investigating Bioactivities

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1548
Author(s):  
Siraj Uddin ◽  
Luqman Bin Safdar ◽  
Saeed Anwar ◽  
Javed Iqbal ◽  
Sabiha Laila ◽  
...  

Green synthesis of nanomaterials is advancing due to its ease of synthesis, inexpensiveness, nontoxicity and renewability. In the present study, an eco-friendly biogenic method was developed for the green synthesis of nickel oxide nanoparticles (NiONPs) using phytochemically rich Berberis balochistanica stem (BBS) extract. The BBS extract was rich in phenolics, flavonoids and berberine. These phytochemicals successfully reduced and stabilised the NiNO3 (green) into NiONPs (greenish-gray). BBS-NiONPs were confirmed by using UV-visible spectroscopy (peak at 305 nm), X-ray diffraction (size of 31.44 nm), Fourier transform infrared spectroscopy (identified -OH group and Ni-O formation), energy dispersive spectroscopy (showed specified elemental nature) and scanning electron microscopy (showed rhombohedral agglomerated shape). BBS-NiONPs were exposed to multiple in vitro bioactivities to ascertain their beneficial biological applications. They exhibited strong antioxidant activities: total antioxidant capacity (64.77%) and 2, 2-diphenyl-1-picrylhydrazyl (71.48%); and cytotoxic potential: Brine shrimp cytotoxicity assay with IC50 (10.40 µg/mL). BBS-NiONPs restricted the bacterial and fungal pathogenic growths at 1000, 500 and 100 µg/mL. Additionally, BBS-NiONPs showed stimulatory efficacy by enhancing seed germination rate and seedling growth at 31.25 and 62.5 µg/mL. In aggregate, BBS extract has a potent antioxidant activity which makes the green biosynthesis of NiONPs easy, economical and safe. The biochemical potential of BBS-NiONPs can be useful in various biomedical and agricultural fields.

Author(s):  
Raíne F. De Carli ◽  
Débora dos S. Chaves ◽  
Tatiane R. Cardozo ◽  
Ana Paula de Souza ◽  
Allan Seeber ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Muhammad Imran Din ◽  
Aneela Rani

Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods.


2017 ◽  
Vol 12 (1) ◽  
pp. 115-118 ◽  
Author(s):  
Saeid Taghavi Fardood ◽  
Ali Ramazani ◽  
Sajjad Moradi

2021 ◽  
Vol 14 (11) ◽  
pp. 20-29
Author(s):  
Mozhdeh Hajimohammadjafar tehrania ◽  
Mahsa Ale-Ebrahim ◽  
Mojtaba Falahati ◽  
Shahram Zarabiyan ◽  
◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1168
Author(s):  
Sung-Jei Hong ◽  
Hyuk-Jun Mun ◽  
Byeong-Jun Kim ◽  
Young-Sung Kim

In this study, ultrafine nickel oxide nanoparticles (NiO NPs) were well synthesized using a simple wet chemical method under low temperature, 300 °C. An Ni(OH)2 precursor was well precipitated by dropping NH4OH into an Ni(Ac)2 solution. TG-DTA showed that the weight of the precipitate decreases until 300 °C; therefore, the precursor was heat-treated at 300 °C. X-ray diffraction (XRD) patterns indicated that hexagonal-structured NiO NPs with (200) preferred orientation was synthesized. In addition, BET specific surface area (SSA) and HRTEM analyses revealed that spherical NiO NPs were formed with SSA and particle size of 60.14 m2/g and ca. 5–15 nm by using the low temperature method. FT-IR spectra of the NiO NPs showed only a sharp vibrating absorption peak at around 550 cm−1 owing to the Ni-O bond. Additionally, in UV-vis absorption spectra, the wavelength for absorption edge and energy band gap of the ultrafine NiO NPs was 290 nm and 3.44 eV.


2020 ◽  
Vol 2 (2) ◽  
pp. 205-209

The present study reports the successful synthesis of nickel oxide nanoparticles using Vernonia amygdalina plant leaf extracts as a chelating agent and nickel (II) chloride hexahydrate (NiCl2•6H2O) as precursor. The synthesized powder was gray black in color and annealed at 500 °C for 2 hours to obtain nickel oxide nanoparticles. Characterization techniques such as powder X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy were used to study the structure and morphology of the nanoparticles. Powder X-ray diffraction patterns revealed that nickel oxide nanoparticles with an average crystallite size of 17.86nm were synthesized. Scanning electron microscope images show that the nanoparticles have octahedral structure. Fourier transform infrared spectrophotometer analysis revealed that the strongest bond at 1094.8cm-1 corresponds to stretching vibration mode of Ni-O nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document