scholarly journals Poly Lactic Acid (PLA) Nanocomposites: Effect of Inorganic Nanoparticles Reinforcement on Its Performance and Food Packaging Applications

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1967
Author(s):  
Mehrajfatema Zafar Mulla ◽  
Md Ramim Tanver Rahman ◽  
Begonya Marcos ◽  
Brijesh Tiwari ◽  
Shivani Pathania

Poly lactic acid (PLA) is a compostable, as well as recyclable, sustainable, versatile and environmentally friendly alternative, because the monomer of PLA-lactide (LA) is extracted from natural sources. PLA’s techno-functional properties are fairly similar to fossil-based polymers; however, in pristine state, its brittleness and delicacy during processing pose challenges to its potential exploitation in diverse food packaging applications. PLA is, therefore, re-engineered to improve its thermal, rheological, barrier and mechanical properties through nanoparticle (NP) reinforcement. This review summarises the studies on PLA-based nanocomposites (PLA NCs) developed by reinforcing inorganic metal/metallic oxide, graphite and silica-based nanoparticles (NPs) that exhibit remarkable improvement in terms of storage modulus, tensile strength, crystallinity, glass transition temperature (Tg) value, antimicrobial property and a decrease in water vapour and oxygen permeability when compared with the pristine PLA films. This review has also discussed the regulations around the use of metal oxide-based NPs in food packaging, PLA NC biodegradability and their applications in food systems. The industrial acceptance of NCs shows highly promising perspectives for the replacement of traditional petrochemical-based polymers currently being used for food packaging.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 654
Author(s):  
Huidong Wei

Poly (lactic acid) (PLA) has a broad perspective for manufacturing green thermoplastic products by thermoforming for its biodegradable properties. The mechanical behaviour of PLA has been demonstrated by its strong dependence on temperature and strain rate at biaxial deformation. A nonlinear viscoelastic model by the previous study was employed in a thermoforming process used for food packaging. An optimisation approach was developed by achieving the optimal temperature profile of specimens by defining multiple heating zones based on numerical modelling with finite element analysis (FEA). The forming process of a PLA product was illustrated by modelling results on shape evolution and biaxial strain history. The optimal temperature profile was suggested in scalloped zones to achieve more even thickness distribution. The sensitivity of the optimal results was addressed by checking the robustness under perturbation.


2016 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
Kurniawan Yuniarto ◽  
Yohanes Aris Purwanto ◽  
Setyo Purwanto ◽  
Bruce A. Welt ◽  
Hadi Karia Purwadaria ◽  
...  

2019 ◽  
Vol 11 (34) ◽  
pp. 31317-31327 ◽  
Author(s):  
Evie L. Papadopoulou ◽  
Uttam C. Paul ◽  
Thi Nga Tran ◽  
Giulia Suarato ◽  
Luca Ceseracciu ◽  
...  

2019 ◽  
pp. 089270571986827 ◽  
Author(s):  
Mehrnoush Monshizadeh ◽  
Sajad Seifi ◽  
Iman Hejazi ◽  
Javad Seyfi ◽  
Hossein Ali Khonakdar

Synergistic effects of organo-modified Mg-Al layered double hydroxide (LDH) and triethyl citrate (TEC) on the properties of poly(lactic acid) (PLA) were demonstrated. PLA/LDH nanocomposites in the absence and presence of TEC were fabricated via solution casting technique. Morphological analysis revealed that as the LDH concentration increases, the number of aggregations is also increased; however, introduction of TEC considerably enhanced the dispersion quality of LDHs. Differential scanning calorimetry results showed that the addition of LDH and TEC had no significant influence on the crystallinity of nanocomposites obtained from solution casting. In contrast, once the samples were cooled from melt, the concurrent use of LDH and TEC led to a dramatic enhancement in the crystallinity of PLA ( X c = 55.5%). Moreover, the LDH nanoparticles counterbalanced the adverse effects of plasticization by TEC leading to enhanced toughness of the final nanocomposites. LDH had also a positive influence on thermal stability of PLA, indicating the heat-insulating role of LDH particles. In conclusion, the concurrent use of LDH and TEC could extend the applicability of PLA especially in food packaging applications.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2346 ◽  
Author(s):  
Stanislav Kotsilkov ◽  
Evgeni Ivanov ◽  
Nikolay Vitanov

Nanoparticles of graphene and carbon nanotubes are attractive materials for the improvement of mechanical and barrier properties and for the functionality of biodegradable polymers for packaging applications. However, the increase of the manufacture and consumption increases the probability of exposure of humans and the environment to such nanomaterials; this brings up questions about the risks of nanomaterials, since they can be toxic. For a risk assessment, it is crucial to know whether airborne nanoparticles of graphene and carbon nanotubes can be released from nanocomposites into the environment at their end-life, or whether they remain embedded in the matrix. In this work, the release of graphene and carbon nanotubes from the poly(lactic) acid nanocomposite films were studied for the scenarios of: (i) biodegradation of the matrix polymer at the disposal of wastes; and (ii) combustion and fire of nanocomposite wastes. Thermogravimetric analysis in air atmosphere, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscope (SEM) were used to verify the release of nanoparticles from nanocomposite films. The three factors model was applied for the quantitative and qualitative risk assessment of the release of graphene and carbon nanotubes from nanocomposite wastes for these scenarios. Safety concern is discussed in respect to the existing regulations for nanowaste stream.


2012 ◽  
Vol 488-489 ◽  
pp. 1393-1397
Author(s):  
Buranin Saengiet ◽  
Wasin Koosomsuan ◽  
Phassakarn Paungprasert ◽  
Rattikarn Khankrua ◽  
Sumonman Naimlang ◽  
...  

The frozen instant food packaging is the one of disposal product, which produced from petroleum–based plastic and has been accumulated worldwide pressuring on the environment. Therefore, the biodegradable plastics have become key candidates in this application. Poly(lactic acid) (PLA) was regarded as one of the most promising biodegradable polymer due to its good mechanical properties. The aim of this work was to study on the freezability and microwavability of PLA through crosslink reaction. For the improvement of the processibility of PLA, hyperbranched polymer (HBP) and polypropylene glycol (PPG) were used as plasticizer. Then the crosslinking of PLA was introduced by addition of peroxide (Luperox101) and triallyl isocyanurate (TAIC) in an internal mixer. Neat and modified PLA samples were characterized and testing for mechanical properties. From the gel content results, it was showed the increased value with the increased content of TAIC due to the denser crosslinked structure of polymer. This result was confirmed by FT-IR spectra. All modified PLA samples showed the higher %strain at break than neat PLA. In addition, impact resistance in frozen state showed the results of modified PLA with 0.1wt% of peroxide and 0.15 wt% of TAIC, was higher than neat PLA. Moreover, this composition also showed the highest microwave response and heat accumulation was suppressed when the specimen was immersed in the water during the test. From the results obtained in this work, the further investigation is needed to pursue and elucidate the relationship between the polymer structure and heat absorption when materials undergo the microwave radiation.


Author(s):  
Ladawan Songtipya ◽  
Thitirat Limchu ◽  
Suphatchara Phuttharak ◽  
Ponusa Songtipya ◽  
Ekwipoo Kalkornsurapranee

Sign in / Sign up

Export Citation Format

Share Document