scholarly journals The Effect of High Fat Diet on Cerebrovascular Health and Pathology: A Species Comparative Review

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3406
Author(s):  
Benjamin Zimmerman ◽  
Payel Kundu ◽  
William D. Rooney ◽  
Jacob Raber

In both humans and animal models, consumption of a high-saturated-fat diet has been linked to vascular dysfunction and cognitive impairments. Laboratory animals provide excellent models for more invasive high-fat-diet-related research. However, the physiological differences between humans and common animal models in terms of how they react metabolically to high-fat diets need to be considered. Here, we review the factors that may affect the translatability of mechanistic research in animal models, paying special attention to the effects of a high-fat diet on vascular outcomes. We draw attention to the dissociation between metabolic syndrome and dyslipidemia in rodents, unlike the state in humans, where the two commonly occur. We also discuss the differential vulnerability between species to the metabolic and vascular effects of macronutrients in the diet. Findings from animal studies are better interpreted as modeling specific aspects of dysfunction. We conclude that the differences between species provide an opportunity to explore why some species are protected from the detrimental aspects of high-fat-diet-induced dysfunction, and to translate these findings into benefits for human health.

1995 ◽  
Vol 269 (1) ◽  
pp. R30-R37 ◽  
Author(s):  
Z. S. Warwick ◽  
H. P. Weingarten

High-fat diets often promote greater caloric intake and/or weight gain than high-carbohydrate diets in both laboratory animals and humans. Because altering the fat content of a diet simultaneously changes both its sensory properties and postingestive effects, it is unclear whether high-fat hyperphagia is due to the diet's palatability, its postingestive effects, or both. The present studies isolated the independent capacity of the orosensory and postingestive effects of a liquid high-fat diet (High-Fat) to produce overeating relative to an isocaloric liquid high-carbohydrate (High-CHO) diet. Rats fed High-Fat orally ate more calories and gained more weight over 16 days than rats fed High-CHO orally. One-bottle sham-feeding intake of High-Fat and High-CHO did not differ, but in two-bottle sham-feeding tests High-Fat was clearly preferred. When orosensory influences on intake were equated via chronic self-regulated intragastric feeding, High-Fat still promoted greater intake than High-CHO, although absolute intake across both diets was lower during intragastric feeding relative to oral feeding. An analysis of short-term intake revealed that rats accustomed to infusion of High-CHO increased meal size immediately when switched to High-Fat. The present results, coupled with previous findings, suggest that the postingestive effects of fat enhance daily caloric intake in two ways: 1) during a meal, fat produces less suppression of intake per calorie than carbohydrate; and 2) after a meal, fat produces less suppression of intake per calorie during the intermeal interval than carbohydrate.


1984 ◽  
Vol 3 (1) ◽  
pp. 93-102 ◽  
Author(s):  
R. J. Jaeger ◽  
I. L. Cote ◽  
A. E. Rogers ◽  
E. H. Silver ◽  
S. Szabo

The influence of diet on the acute toxicity (lethality) and distribution of glutathione as measured by tissue nonprotein sulfhydryl (NPSH) concentration following acrylonitrile (ACN) treatment was studied. The tissue distribution of radiolabeled (14C) acrylonitrile or its radioactive metabolites was also determined. The diets tested were a standard laboratory rat chow; a casein-based, complete diet; and 2 diets high in saturated fat content that were either lipotrope deficient or lipotrope supplemented. The latter 2 diets were associated with decreased weight gain in the absence of ACN and increased lethality after orally administratered ACN. The increase in lethality, while most pronounced in the group fed the lipotrope-deficient, high-fat diet, was also seen in rats fed the purified control diet. The high-fat diets were associated with increases in brain and liver NPSH concentrations (mg NPSH/100 g body weight). Following oral administration of 1–14C-ACN, blood contained the highest specific activity. In terms of fraction of administered dose, liver was found to contain the highest total fraction. In the tissues measured, a majority of radioactivity appeared bound to trichloroacetic acid (TCA) insoluble components. The sequence of tissue activity (nCi 14C per g or ml) was as follows: blood > stomach > liver, duodenum, lung, kidney > brain > adrenal. While diet affected toxicity, it did not modify this general ranking.


1994 ◽  
Vol 71 (06) ◽  
pp. 755-758 ◽  
Author(s):  
E M Bladbjerg ◽  
P Marckmann ◽  
B Sandström ◽  
J Jespersen

SummaryPreliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20% or 50% of energy). The 2 diets were served on 2 consecutive days. Blood samples were collected at 8.00 h, 16.30 h and 19.30 h, and analysed for triglycerides, FVII coagulant activity using human (FVII:C) or bovine thromboplastin (FVII:Bt), and FVII amidolytic activity (FVIPAm). The ratio FVII:Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII: Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet. The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis.


Metabolism ◽  
2021 ◽  
Vol 116 ◽  
pp. 154652
Author(s):  
Veronyca G. Paula ◽  
Yuri K. Sinzato ◽  
Rafaianne Q.M. Souza ◽  
Larissa L. Cruz ◽  
Eduardo Kloppel ◽  
...  

2021 ◽  
Author(s):  
Qiao Jie ◽  
Yue-Zhong Ren ◽  
Yi-wen Wu

High-fat diets(HFD)are defined as lipids accounting for exceeded 30% of total energy in-take, and current research is mostly 45% and 60%. With a view of the tendency that patients who...


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Megha Murali ◽  
Carla Taylor ◽  
Peter Zahradka ◽  
Jeffrey Wigle

Background and Objective: Arterial stiffness is recognized as being an independent predictor of incipient vascular disease associated with obesity and metabolic syndrome. In obese subjects, the decrease in the plasma level of adiponectin, an anti-diabetic and anti-atherogenic adipokine, is well known. Hence the aim of our study was to examine the effect of loss of adiponectin on the development of arterial stiffness in response to a high fat diet. Methods and Results: Male 8-week old adiponectin knockout (APN KO) and C57BL/6 (control) mice were fed a high fat diet (60% Calories from fat) for 12 weeks to induce obesity and insulin resistance (n=10/group). APN KO and C57BL/6 mice were fed a low fat diet (10% Calories from fat) and used as lean controls (n=10/group). After 12 weeks on the high fat diet, the APN KO mice weighed significantly more than the C57BL/6 mice (45.1±1.3 g vs 40.1±1.1 g, p=0.0008) but there was no difference in the final weights between genotypes fed the low fat diet. APN KO mice on both high and low fat diets for 12 weeks developed insulin resistance as measured by oral glucose tolerance test (Area under curve (AUC) mmol/L х min = 437±70 and 438±57) as compared to the C57BL/6 mice fed low or high fat diets (AUC mmol/L х min = 251±27 and 245±43). Arterial stiffness was determined by Doppler pulse wave velocity analysis of the femoral artery. Pulse wave velocity was increased in APN KO mice fed a high fat diet relative to those fed the low fat diet (12.56±0.78 cm/s vs 9.47±0.95 cm/s, p=0.0035; n=8-10). Pulse wave velocity was not different between C57BL/6 control mice on the low or high fat diets (10.63±0.73 cm/s and 10.86±0.50 cm/s), thus revealing that only mice deficient in adiponectin developed arterial stiffness in response to high fat diet. Conclusions: Potentiation of the vascular stiffness in diet-induced obese APN KO mice indicates that adiponectin has a role in modulating vascular structure and the APN KO mouse models the vascular changes that occur in human obesity and metabolic disorders. Morphometric analysis of the aortic tissues for vessel thickness and expression of extracellular proteins will further validate the potential role of adiponectin on the maintenance of arterial elasticity in addition to its known effect on eNOS mediated vasoprotection.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Deok Ho Choi ◽  
Eun Ju Kim ◽  
An Sook Lee ◽  
Dae Gill Kang ◽  
Ho Sub Lee

2021 ◽  
Vol 59 (1) ◽  
pp. 1203-1215
Author(s):  
Khuzaidatul Azidah Ahmad Nazri ◽  
Qodriyah Haji Mohd Saad ◽  
Norsyahida Mohd Fauzi ◽  
Fhataheya Buang ◽  
Ibrahim Jantan ◽  
...  

2021 ◽  
Author(s):  
Ting Li ◽  
Quan Huo ◽  
Zhi Guo Lu ◽  
Xin Ran Xing ◽  
Lu Ding ◽  
...  

Abstract Background The occurrence of neural tube defects is a complex process in which genes, internal and external environment and other factors jointly influence and occur interactively. In this experiment, animal models of different energy balance states are constructed. To explore the mechanism of fos and leptin-leptin receptor during neural tube development of offspring under different energy states and its effect on neural tube development of offspringMethods Using gene identification technology to obtain Mex3c+/- negative energy balance mice and high-fat diet to obtain positive energy balance mice, and obtain E10.5d, E12.5d, E14.5d embryos. We will verify the expression of fos, leptin, LEPR, nestin, PAX3, and H3K27me3 proteins in the neural tube of the offspring through relevant experimental methods.Results We have successfully constructed animal models, Control group (18.82g±1.54g), Mex3c group (18.84g±1.08g), HFD group (22.61g±1.10g). Neural tube HE staining showen that compared with the Control group, the neuronal maturity of the Mex3c group and the HFD group was reduced. Immunohistochemical staining showed that both fos and leptin were expressed on the nucleus, and LEPR was expressed on the cell membrane. Western blot experiments showed that compared with the Control group, the Mex3c group and the HFD group had low expression of fos protein (P<0.01), the Mex3c group had high expression of LEPR protein (P<0.01) and the HFD group had high expression of LEPR protein (P<0.01). Immunostaining experiments showed that nestin was expressed in nerve fibers, and PAX3 and H3K27me3 were both expressed in the nucleus. Western blooting experiment showed that compared with the Control group, the Mex3c group had high expression of nestin protein (P<0.01), PAX3 protein (P<0.01), H3K27me3 (P<0.01), and the HFD group had high expression of nestin protein (P<0.01). ) And PAX3 protein (P<0.01), H3K27me3 (P<0.01).ConclusionsMex3c regulates leptin and LEPR by enhancing the expression of fos mRNA to participate in the neural tube development process of offspring. The neural tube nestin, PAX3, and H3K27me3 of the offspring of Mex3c+/- mice and high-fat diet mice continue to be highly expressed. Mex3c+/- mice express low leptin, and high-fat diet mice highly express leptin; preliminary reveals the regulation of different energy states Leptin-LEPR is involved in the process of neurodevelopment. Mex3c mutant mice and mice on a high-fat diet lead to decreased neurodevelopmental maturity.


2016 ◽  
Vol 130 (11) ◽  
pp. 871-880 ◽  
Author(s):  
Victor V. Lima ◽  
Fernanda R. Giachini ◽  
Takayuki Matsumoto ◽  
Weiguo Li ◽  
Alecsander F.M. Bressan ◽  
...  

Increased O-GlcNAcylation (O-GlcNAc) in cerebral arteries, as a result of a high-fat diet (HFD), augments reactivity to constrictor stimuli as well as increases mitogen-activated protein kinases (MAPKs) activity. Increased O-GlcNAc levels may represent a new mechanism to cerebral vasculature dysfunction under pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document