scholarly journals Structure of Silk I (Bombyx mori Silk Fibroin before Spinning) -Type II β-Turn, Not α-Helix-

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3706
Author(s):  
Tetsuo Asakura

Recently, considerable attention has been paid to Bombyx mori silk fibroin by a range of scientists from polymer chemists to biomaterial researchers because it has excellent physical properties, such as strength, toughness, and biocompatibility. These appealing physical properties originate from the silk fibroin structure, and therefore, structural determinations of silk fibroin before (silk I) and after (silk II) spinning are a key to make wider applications of silk. There are discrepancies about the silk I structural model, i.e., one is type II β-turn structure determined using many solid-state and solution NMR spectroscopies together with selectively stable isotope-labeled model peptides, but another is α-helix or partially α-helix structure speculated using IR and Raman methods. In this review, firstly, the process that led to type II β-turn structure by the authors was introduced in detail. Then the problems in speculating silk I structure by IR and Raman methods were pointed out together with the problem in the assignment of the amide I band in the spectra. It has been emphasized that the conformational analyses of proteins and peptides from IR and Raman studies are not straightforward and should be very careful when the proteins contain β-turn structure using many experimental data by Vass et al., (Chem. Rev., 2003, 103, 1917–1954). In conclusion, the author emphasized here that silk I structure should be type II β-turn, not α-helix.

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Traian V. Chirila

Fibroin is a fibrous protein that can be conveniently isolated from the silk cocoons produced by the larvae of Bombyx mori silk moth. In its form as a hydrogel, Bombyx mori silk fibroin (BMSF) has been employed in a variety of biomedical applications. When used as substrates for biomaterial-cells constructs in tissue engineering, the oxygen transport characteristics of the BMSF membranes have proved so far to be adequate. However, over the past three decades the BMSF hydrogels have been proposed episodically as materials for the manufacture of contact lenses, an application that depends on substantially elevated oxygen permeability. This review will show that the literature published on the oxygen permeability of BMSF is both limited and controversial. Additionally, there is no evidence that contact lenses made from BMSF have ever reached commercialization. The existing literature is discussed critically, leading to the conclusion that BMSF hydrogels are unsuitable as materials for contact lenses, while also attempting to explain the scarcity of data regarding the oxygen permeability of BMSF. To the author’s knowledge, this review covers all publications related to the topic.


1992 ◽  
Vol 46 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Tetsuo Asakura ◽  
Motohiro Kitaguchi ◽  
Makoto Demura ◽  
Harutoshi Sakai ◽  
Keiichi Komatsu

2013 ◽  
Vol 51 (9) ◽  
pp. 742-748 ◽  
Author(s):  
Mingying Yang ◽  
Wen He ◽  
Yajun Shuai ◽  
Sijia Min ◽  
Liangjun Zhu

Sign in / Sign up

Export Citation Format

Share Document