scholarly journals Theoretical Prediction of Structures, Vibrational Circular Dichroism, and Infrared Spectra of Chiral Be4B8 Cluster at Different Temperatures

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3953
Author(s):  
Carlos Emiliano Buelna-García ◽  
Eduardo Robles-Chaparro ◽  
Tristan Parra-Arellano ◽  
Jesus Manuel Quiroz-Castillo ◽  
Teresa del-Castillo-Castro ◽  
...  

Lowest-energy structures, the distribution of isomers, and their molecular properties depend significantly on geometry and temperature. Total energy computations using DFT methodology are typically carried out at a temperature of zero K; thereby, entropic contributions to the total energy are neglected, even though functional materials work at finite temperatures. In the present study, the probability of the occurrence of one particular Be4B8 isomer at temperature T is estimated by employing Gibbs free energy computed within the framework of quantum statistical mechanics and nanothermodynamics. To identify a list of all possible low-energy chiral and achiral structures, an exhaustive and efficient exploration of the potential/free energy surfaces is carried out using a multi-level multistep global genetic algorithm search coupled with DFT. In addition, we discuss the energetic ordering of structures computed at the DFT level against single-point energy calculations at the CCSD(T) level of theory. The total VCD/IR spectra as a function of temperature are computed using each isomer’s probability of occurrence in a Boltzmann-weighted superposition of each isomer’s spectrum. Additionally, we present chemical bonding analysis using the adaptive natural density partitioning method in the chiral putative global minimum. The transition state structures and the enantiomer–enantiomer and enantiomer–achiral activation energies as a function of temperature evidence that a change from an endergonic to an exergonic type of reaction occurs at a temperature of 739 K.

In previous papers (Michels and Michels 1935; Michels, Michels and Wouters 1935) the results of isotherm measurements on CO 2 and a method for interpolation of the pv values at intermediate temperatures and densities have been published. From the data obtained, the specific heat at constant volume C v , the free energy F , the total energy U , and the entropy S , have been calculated, and these results are given in the present communication. The values of F, U and S at N. T. P. have been taken as zero. The values of C v , F, S and U at a density of 1 Amagat unit ( ρ = 1) have first been calculated for different temperatures. To the values, so obtained, has been added the increase of these quantities by compression. The values of C v at ρ = 1 have been calculated, using the interpolation formula as given by Shilling and Partington (1928).


2011 ◽  
Vol 83 (8) ◽  
pp. 1507-1514 ◽  
Author(s):  
Ian H. Williams ◽  
J. Javier Ruiz Pernía ◽  
Iñaki Tuñón

2D free-energy surfaces for transfer of the methoxymethyl cation between two water molecules are constructed from molecular dynamics (MD) simulations in which these atoms are treated quantum-mechanically within a box of 1030 classical solvent water molecules at 300 K. This provides a simple model for glycosyl transfer in water. The AM1/TIP3P surfaces with 2D-spline corrections at either MPWB1K/6-31+G(d,p) or MP2/6-31+G(d,p) contain a shallow free-energy well corresponding to an oxacarbenium ion intermediate in a DN*AN mechanism. MD analysis at three temperatures leads to a classical estimate of the lifetime of the methoxymethyl cation in water; when quantum corrections for vibrational zero-point energy are included, the lifetime is estimated to be about 1 ps, in agreement with the best experimental estimate. This suggests that computational simulation, with appropriate high-level correction, is a reliable tool to obtain detailed and reliable mechanistic descriptions for glycosidases. In view of the importance of developing improved anti-influenza drugs, simulations of sialidases that considered both sialyl oxacarbenium ion and covalent sialyl-enzyme as possible intermediates could provide particular insight.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huziel E. Sauceda ◽  
Valentin Vassilev-Galindo ◽  
Stefan Chmiela ◽  
Klaus-Robert Müller ◽  
Alexandre Tkatchenko

AbstractNuclear quantum effects (NQE) tend to generate delocalized molecular dynamics due to the inclusion of the zero point energy and its coupling with the anharmonicities in interatomic interactions. Here, we present evidence that NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature. The underlying physical mechanism promoted by NQE depends on the particular interaction under consideration. First, the effective reduction of interatomic distances between functional groups within a molecule can enhance the n → π* interaction by increasing the overlap between molecular orbitals or by strengthening electrostatic interactions between neighboring charge densities. Second, NQE can localize methyl rotors by temporarily changing molecular bond orders and leading to the emergence of localized transient rotor states. Third, for noncovalent van der Waals interactions the strengthening comes from the increase of the polarizability given the expanded average interatomic distances induced by NQE. The implications of these boosted interactions include counterintuitive hydroxyl–hydroxyl bonding, hindered methyl rotor dynamics, and molecular stiffening which generates smoother free-energy surfaces. Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.


Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Marya F. Velasco ◽  
Camila F. Silva ◽  
Luís S. R. Vale

ABSTRACT The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.


2011 ◽  
Vol 324 ◽  
pp. 166-169 ◽  
Author(s):  
Farah Zeitouni ◽  
Gehan El-Subruiti ◽  
Ghassan Younes ◽  
Mohammad Amira

The rate of aquation of bromopentaammine cobalt(III) ion in the presence of different types of dicarboxylate solutions containing tert-butanol (40% V/V) have been measured spectrophotometrically at different temperatures (30-600°C) in the light of the effects of ion-pairing on reaction rates and mechanism. The thermodynamic and extrathermodynamic parameters of activation have been calculated and discussed in terms of solvent effect on the ion-pair aquation reaction. The free energy of activation ∆Gip* is more or less linearly varied among the studied dicarboxylate ion-pairing ligands indicating the presence of compensation effect between ∆Hip* and ∆Sip*. Comparing the kip values with respect of different buffers at 40% of ter-butanol is introduced.


1975 ◽  
Vol 26 (2) ◽  
pp. 127-135 ◽  
Author(s):  
A. F. Ahmad

SUMMARYSingle-point crosses using five allelic spore colour mutants at the buff locus were carried out at different temperatures. The data suggest (i) that fixed or preferred opening points in the DNA, required for initiation of recombination events, are available more often at higher than at lower temperatures, (ii) opening points at or beyond both proximal and distal ends of the buff locus respond similarly to variations in temperature, and (iii) the correction pattern seems to be independent of temperature at the buff locus in S. brevicollis.


1986 ◽  
Vol 54-57 ◽  
pp. 955-956 ◽  
Author(s):  
V.L. Moruzzi ◽  
P.M. Marcus ◽  
K. Schwarz ◽  
P. Mohn
Keyword(s):  

Reversible results for the adsorption of benzene, toluene and n -heptane vapours on mercury have been obtained. The films were found to be gaseous and obeyed the Volmer eqution F ( A - b ) = kT , where F = spreading pressure, A =area per molecule and b = co-area. The possibility that the films might be immobile was considered and the Langmuir equation was applied but found unsatisfactory. A standard state for the surface phase was defined and the free energy, total energy and entropy of adsorption evaluated. The heat of adsorption was shown to increase with the amount on the surface. A number of phase changes were found to occur after the completion of monolayer adsorp­tion, the most striking being interpreted as the change over from ‘flat’ to ‘vertical’ adsorp­tion of the toluene molecules. Others were thought to be either two-dimensional condensation or adsorption of a second layer.


Sign in / Sign up

Export Citation Format

Share Document