scholarly journals Solid-Phase “Self-Hydrolysis” of [Zn(NH3)4MoO4@2H2O] Involving Enclathrated Water—An Easy Route to a Layered Basic Ammonium Zinc Molybdate Coordination Polymer

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4022
Author(s):  
Kende Attila Béres ◽  
István E. Sajó ◽  
György Lendvay ◽  
László Trif ◽  
Vladimir M. Petruševski ◽  
...  

An aerial humidity-induced solid-phase hydrolytic transformation of the [Zn(NH3)4]MoO4@2H2O (compound 1@2H2O) with the formation of [(NH4)xH(1−x)Zn(OH)(MoO4)]n (x = 0.92–0.94) coordination polymer (formally NH4Zn(OH)MoO4, compound 2) is described. Based on the isostructural relationship, the powder XRD indicates that the crystal lattice of compound 1@2H2O contains a hydrogen-bonded network of tetraamminezinc (2+) and molybdate (2−) ions, and there are cavities (O4N4(μ-H12) cube) occupied by the two water molecules, which stabilize the crystal structure. Several observations indicate that the water molecules have no fixed positions in the lattice voids; instead, the cavity provides a neighborhood similar to those in clathrates. The @ symbol in the notation is intended to emphasize that the H2O in this compound is enclathrated rather than being water of crystallization. Yet, signs of temperature-dependent dynamic interactions with the wall of the cages can be detected, and 1@2H2O easily releases its water content even on standing and yields compound 2. Surprisingly, hydrolysis products of 1 were observed even in the absence of aerial humidity, which suggests a unique solid-phase quasi-intramolecular hydrolysis. A mechanism involving successive substitution of the ammonia ligands by water molecules and ammonia release is proposed. An ESR study of the Cu-doped compound 2 (2#dotCu) showed that this complex consists of two different Cu2+(Zn2+) environments in the polymeric structure. Thermal decomposition of compounds 1 and 2 results in ZnMoO4 with similar specific surface area and morphology. The ZnMoO4 samples prepared from compounds 1 and 2 and compound 2 in itself are active photocatalysts in the degradation of Congo Red dye. IR, Raman, and UV studies on compounds 1@2H2O and 2 are discussed in detail.

2021 ◽  
Vol 7 (10) ◽  
pp. eabf2558
Author(s):  
J. Dedic ◽  
H. I. Okur ◽  
S. Roke

Hyaluronan (HA) is an anionic, highly hydrated bio-polyelectrolyte found in the extracellular environment, like the synovial fluid between joints. We explore the extended hydration shell structure of HA in water using femtosecond elastic second-harmonic scattering (fs-ESHS). HA enhances orientational water-water correlations. Angle-resolved fs-ESHS measurements and nonlinear optical modeling show that HA behaves like a flexible chain surrounded by extended shells of orientationally correlated water. We describe several ways to determine the concentration-dependent size and shape of a polyelectrolyte in water, using the amount of water oriented by the polyelectrolyte charges as a contrast agent. The spatial extent of the hydration shell is determined via temperature-dependent measurements and can reach up to 475 nm, corresponding to a length of 1600 water molecules. A strong isotope effect, stemming from nuclear quantum effects, is observed when light water (H2O) is replaced by heavy water (D2O), amounting to a factor of 4.3 in the scattered SH intensity.


1981 ◽  
Vol 23 (8) ◽  
pp. 1703-1719 ◽  
Author(s):  
George Bell ◽  
John R. Todd ◽  
John A. Blain ◽  
John D. E. Patterson ◽  
Charles E. L. Shaw

Clay Minerals ◽  
1986 ◽  
Vol 21 (2) ◽  
pp. 125-131 ◽  
Author(s):  
S. Komarneni ◽  
R. Roy

AbstractK-depleted phlogopite mica was used as a topotactic precursor and treated with alkali (Li+, K+, , Rb+, Cs+), alkaline-earth (Mg2+, Ca2+, Sr2+, Ba2+) and trivalent (Al3+) cations under hydrothermal conditions of 200°C and 30 MPa pressure. K-, NH4-, Rb- and Cs-aluminosilicate micas were synthesised at 200°C in one day. The synthesis of Cs-aluminosilicate mica, with potential applications in the management of nuclear wastes, has been achieved for the first time by this approach. Ion exchange by Li+, Na+ and alkaline-earth cations under hydrothermal conditions did not produce anhydrous mica phases but resulted in hydrous phases with one or two layers of water molecules between the clay layers. The formation of hydrous phases may be attributed to the high hydration energy of the above cations compared to K+, , RB+ and Cs+. Ion exchange with Al3+ produced a chlorite-like phase because of the hydrolysis of Al3+ under these hydrothermal conditions. These studies are of relevance in the immobilization of wastes where hazardous ions can be fixed in highly stable insoluble phases like mica or chlorite.


2017 ◽  
Vol 73 (11) ◽  
pp. 1599-1602 ◽  
Author(s):  
Matimon Sangsawang ◽  
Kittipong Chainok ◽  
Nanthawat Wannarit

The title compound, [CdNa2(C8H4O4)2(C3H7NO)(H2O)2]nor [CdNa2(1,3-bdc)2(DMF)(H2O)2]n, is a new CdII–NaIheterobimetallic coordination polymer. The asymmetric unit consists of one CdIIatom, two NaIatoms, two 1,3-bdc ligands, two coordinated water molecules and one coordinated DMF molecule. The CdIIatom exhibits a seven-coordinate geometry, while the NaIatoms can be considered to be pentacoordinate. The metal ions and their symmetry-related equivalents are connectedviachelating–bridging carboxylate groups of the 1,3-bdc ligands to generate a three-dimensional framework. In the crystal, there are classical O—H...O hydrogen bonds involving the coordinated water molecules and the 1,3-bdc carboxylate groups and π–π stacking between the benzene rings of the 1,3-bdc ligands present within the frameworks.


Author(s):  
Nives Politeo ◽  
Mateja Pisačić ◽  
Marijana Đaković ◽  
Vesna Sokol ◽  
Boris-Marko Kukovec

A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine (4,4′-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4′-bipyridine-κ2 N:N′] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O} n or {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O} n , (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4′-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4′-bpy)(H2O)4]2+} n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4′-bipyridine N atoms in the trans position. The 4,4′-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4′-bpy)(H2O)4]2+} n , the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H...O and O—H...N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R 2 4(8) and R 4 4(10) loops, a dimeric R 2 2(8) loop and a pentameric R 4 5(16) loop.


2018 ◽  
Vol 1 (4) ◽  
pp. e00057 ◽  
Author(s):  
A.A Chistov ◽  
A.V. Talanova ◽  
M.V. Melnikova ◽  
S.S. Kuznetsova ◽  
E.F. Kolesanova

Low molecular weight chromogenic thrombin peptide substrates, p-nitroanilides of short peptides protected at their N-terminal amino group, were prepared by solid-phase peptide synthesis on polystyrene-divinylbenzene polymer with trityl groups with preliminary attached p-phenylene diamine moiety. After the cleavage from the resin peptide p-aminoanilides were mildly oxidized to p-nitroanilides with the mixture of potassium sulfate and persulfate. Adsorption onto polymer support Bio-Beads SM-2 with further elution by acetonitrile allowed easy separating peptide p-nitroanilides from the oxidizer and obtaining the thrombin chromogenic substrate preparations with the target substance contents of not less than 95% and yields of 30-40%. Thrombin effectively catalyzed hydrolysis of the prepared substrates with KM and Vmax values of 29-134 mM and 0.03-1/16 mM/s, respectively.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cheyenne N. Phillips ◽  
Shawn Schowe ◽  
Conner J. Langeberg ◽  
Namoos Siddique ◽  
Erich G. Chapman ◽  
...  

Understanding how oxidatively damaged RNA is handled intracellularly is of relevance due to the link between oxidized RNA and the progression/development of some diseases as well as aging. Among the ribonucleases responsible for the decay of modified (chemically or naturally) RNA is the exonuclease Xrn-1, a processive enzyme that catalyzes the hydrolysis of 5′-phosphorylated RNA in a 5′→3′ direction. We set out to explore the reactivity of this exonuclease towards oligonucleotides (ONs, 20-nt to 30-nt long) of RNA containing 8-oxo-7,8-dihydroguanosine (8-oxoG), obtained via solid-phase synthesis. The results show that Xrn-1 stalled at sites containing 8-oxoG, evidenced by the presence of a slower moving band (via electrophoretic analyses) than that observed for the canonical analogue. The observed fragment(s) were characterized via PAGE and MALDI-TOF to confirm that the oligonucleotide fragment(s) contained a 5′-phosphorylated 8-oxoG. Furthermore, the yields for this stalling varied from app. 5–30% with 8-oxoG located at different positions and in different sequences. To gain a better understanding of the decreased nuclease efficiency, we probed: 1) H-bonding and spatial constraints; 2) anti-syn conformational changes; 3) concentration of divalent cation; and 4) secondary structure. This was carried out by introducing methylated or brominated purines (m1G, m6,6A, or 8-BrG), probing varying [Mg2+], and using circular dichroism (CD) to explore the formation of structured RNA. It was determined that spatial constraints imposed by conformational changes around the glycosidic bond may be partially responsible for stalling, however, the results do not fully explain some of the observed higher stalling yields. We hypothesize that altered π-π stacking along with induced H-bonding interactions between 8-oxoG and residues within the binding site may also play a role in the decreased Xrn-1 efficiency. Overall, these observations suggest that other factors, yet to be discovered/established, are likely to contribute to the decay of oxidized RNA. In addition, Xrn-1 degraded RNA containing m1G, and stalled mildly at sites where it encountered m6,6A, or 8-BrG, which is of particular interest given that the former two are naturally occurring modifications.


Sign in / Sign up

Export Citation Format

Share Document