scholarly journals Amber Extract Reduces Lipid Content in Mature 3T3-L1 Adipocytes by Activating the Lipolysis Pathway

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4630
Author(s):  
Erica Sogo ◽  
Siqi Zhou ◽  
Haruna Haeiwa ◽  
Reiko Takeda ◽  
Kazuma Okazaki ◽  
...  

Amber—the fossilized resin of trees—is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. Mature adipocytes are used to evaluate the effect of amber extract on lipolysis by measuring the triglyceride content, glucose uptake, glycerol release, and lipolysis-related gene expression. Our results show that the amount of triacylglycerol, which is stored in lipid droplets in mature adipocytes, decreases following 96 h of treatment with different concentrations of amber extract. Amber extract treatment also decreases glucose uptake and increases the release of glycerol from the cells. Moreover, amber extract increases the expression of lipolysis-related genes encoding perilipin and hormone-sensitive lipase (HSL) and promotes the activity of HSL (by increasing HSL phosphorylation). Amber extract treatment also regulates the expression of other adipocytokines in mature adipocytes, such as adiponectin and leptin. Overall, our results indicate that amber extract increases the expression of lipolysis-related genes to induce lipolysis in 3T3-L1 cells, highlighting its potential for treating various obesity-related diseases.

1964 ◽  
Vol 207 (5) ◽  
pp. 1166-1168 ◽  
Author(s):  
Martha Vaughan

Pitressin, a mixture of arginine and lysine vasopressins, stimulates the release of glycerol and of free fatty acids from rat epididymal fat pads in vitro. This effect is inhibited by prostaglandin E1, which has previously been shown to interfere with the analogous effects of catecholamines, ACTH, TSH, and glucagon. Like these latter hormones, Pitressin, added for a few minutes after tissues have been incubated in the absence of hormones, significantly increases the activity of phosphorylase and of the hormone-sensitive lipase. (The activity of both of these enzymes declines during the period of incubation before the hormone is added.) No effects of synthetic oxytocin at similar concentration on glycerol release or on phosphorylase activity were demonstrated.


2003 ◽  
Vol 161 (6) ◽  
pp. 1093-1103 ◽  
Author(s):  
Carole Sztalryd ◽  
Guoheng Xu ◽  
Heidi Dorward ◽  
John T. Tansey ◽  
Juan A. Contreras ◽  
...  

Akey step in lipolytic activation of adipocytes is the translocation of hormone-sensitive lipase (HSL) from the cytosol to the surface of the lipid storage droplet. Adipocytes from perilipin-null animals have an elevated basal rate of lipolysis compared with adipocytes from wild-type mice, but fail to respond maximally to lipolytic stimuli. This defect is downstream of the β-adrenergic receptor–adenylyl cyclase complex. Now, we show that HSL is basally associated with lipid droplet surfaces at a low level in perilipin nulls, but that stimulated translocation from the cytosol to lipid droplets is absent in adipocytes derived from embryonic fibroblasts of perilipin-null mice. We have also reconstructed the HSL translocation reaction in the nonadipocyte Chinese hamster ovary cell line by introduction of GFP-tagged HSL with and without perilipin A. On activation of protein kinase A, HSL-GFP translocates to lipid droplets only in cells that express fully phosphorylatable perilipin A, confirming that perilipin is required to elicit the HSL translocation reaction. Moreover, in Chinese hamster ovary cells that express both HSL and perilipin A, these two proteins cooperate to produce a more rapidly accelerated lipolysis than do cells that express either of these proteins alone, indicating that lipolysis is a concerted reaction mediated by both protein kinase A–phosphorylated HSL and perilipin A.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Mi-Seong Kim ◽  
Ha-Rim Kim ◽  
Hong-Seob So ◽  
Young-Rae Lee ◽  
Hyoung-Chul Moon ◽  
...  

Introduction. Crotonis fructus (CF) is the mature fruit ofCroton tigliumL. and has been used for the treatment of gastrointestinal disturbance in Asia. It is well known that the main component of CF is croton oil (CO). The present study is to investigate the effects of CF extracts (CFE) and CO on lipolysis in OP9 adipocytes.Methods. Glycerol release to the culture supernatants was used as a marker of adipocyte lipolysis.Results. Treatment with various concentrations of CFE and CO stimulates glycerol release in a dose-dependent manner. The increase in glycerol release by CFE is more potent than isoproterenol, which is aβ-adrenergic agonist as a positive control in our system. The increased lipolysis by CFE and CO was accompanied by an increase of phosphorylated hormone sensitive lipase (pHSL) but not nonphosphorylated HSL protein and mRNA. Pretreatment with H89, which is a protein kinase A inhibitor, significantly abolished the CFE- and CO-induced glycerol release in OP9 adipocytes. These results suggest that CFE and CO may be a candidate for the development of a lipolysis-stimulating agent in adipocytes.


2020 ◽  
Vol 32 (11) ◽  
pp. 967
Author(s):  
Longlong Tao ◽  
Hongyan Zhang ◽  
Hongmei Wang ◽  
Liuhui Li ◽  
Libo Huang ◽  
...  

Lipid droplets (LDs) are reservoirs of arachidonoyl lipids for prostaglandin (PG) E2 synthesis, and progesterone can stimulate PGE2 synthesis; however, the relationship between progesterone and LD metabolism in the murine cervix remains unclear. In the present study we examined LD distribution and changes in the expression of proteins involved in lipolysis and autophagy in the murine cervix during pregnancy, and compared the findings with those in dioestrous mice. During mid-pregnancy, LDs were predominantly distributed in the cervical epithelium. Electron microscopy revealed the transfer of numerous LDs from the basal to apical region in the luminal epithelium, marked catabolism of LDs, an elevated number of LDs and autophagosomes and a higher LD:mitochondrion size ratio in murine cervical epithelial cells (P<0.05). In addition, immunohistochemical and western blotting analyses showed significantly higher cAMP-dependent protein kinase, adipose triglyceride lipase and hormone-sensitive lipase expression, and a higher light chain 3 (LC3) II:LC3I ratio in the stroma and smooth muscles and, particularly, in murine cervical epithelial cells, during mid-pregnancy than late dioestrus. In conclusion, these results suggest that the enhanced lipolysis of LDs and autophagy in murine cervical tissues were closely related to pregnancy and were possibly controlled by progesterone because LD catabolism may be necessary for energy provision and PGE2 synthesis to maintain a closed pregnant cervix.


2001 ◽  
Vol 281 (4) ◽  
pp. E857-E866 ◽  
Author(s):  
Jinya Suzuki ◽  
Wen-Jun Shen ◽  
Brett D. Nelson ◽  
Shailja Patel ◽  
Jacques H. Veerkamp ◽  
...  

Hormone-sensitive lipase (HSL) hydrolyzes triglyceride (TG) in adipose tissue. HSL is also expressed in heart. To explore the actions of cardiac HSL, heart-specific, tetracycline (Tc)-controlled HSL-overexpressing mice were generated. Tc-responsive element-HSL transgenic (Tg) mice were generated and crossed with myosin heavy chain (MHC)α-tTA Tg mice, which express the Tc-responsive transactivator (tTA) in the heart. The double-Tg mice (MHC-HSL) were maintained with doxycycline (Dox) to suppress Tg HSL. Upon removal of Dox, cardiac HSL activity and protein increased 12- and 8-fold, respectively, and the expression was heart specific. Although cardiac TG content increased twofold in control mice after an overnight fast, it did not increase in HSL-induced mice. Electron microscopy showed numerous lipid droplets in the myocardium of fasted control mice, whereas fasted HSL-induced mice showed virtually no droplets. Microarray analysis showed altered expression of cardiac genes for fatty acid oxidation, transcription factors, signaling molecules, cytoskeletal proteins, and histocompatibility antigens in HSL-induced mice. Thus cardiac HSL plays a role in controlling accumulation of triglyceride droplets and can affect the expression of a number of cardiac genes.


2009 ◽  
Vol 30 (5) ◽  
pp. 1231-1242 ◽  
Author(s):  
Angela Hommel ◽  
Deike Hesse ◽  
Wolfgang Völker ◽  
Alexander Jaschke ◽  
Markus Moser ◽  
...  

ABSTRACT ADP-ribosylation factor (ARF)-related protein 1 (ARFRP1) is a GTPase regulating protein trafficking between intracellular organelles. Here we show that mice lacking Arfrp1 in adipocytes (Arfrp1 ad−/−) are lipodystrophic due to a defective lipid droplet formation in adipose cells. Ratios of mono-, di-, and triacylglycerol, as well as the fatty acid composition of triglycerides, were unaltered. Lipid droplets of brown adipocytes of Arfrp1 ad−/− mice were considerably smaller and exhibited ultrastructural alterations, such as a disturbed interaction of small lipid-loaded particles with the larger droplets, suggesting that ARFRP1 mediates the transfer of newly formed small lipid particles to the large storage droplets. SNAP23 (synaptosomal-associated protein of 23 kDa) associated with small lipid droplets of control adipocytes but was located predominantly in the cytosol of Arfrp1 ad−/− adipocytes, suggesting that lipid droplet growth is defective in Arfrp1 ad−/− mice. In addition, levels of phosphorylated hormone-sensitive lipase (HSL) were elevated, and association of adipocyte triglyceride lipase (ATGL) with lipid droplets was enhanced in brown adipose tissue from Arfrp1 ad−/− mice. Accordingly, basal lipolysis was increased after knockdown of Arfrp1 in 3T3-L1 adipocytes. The data indicate that disruption of ARFRP1 prevents the normal enlargement of lipid droplets and produces an activation of lipolysis.


2005 ◽  
Vol 280 (52) ◽  
pp. 43109-43120 ◽  
Author(s):  
Hsiao-Ping H. Moore ◽  
Robert B. Silver ◽  
Emilio P. Mottillo ◽  
David A. Bernlohr ◽  
James G. Granneman

1998 ◽  
Vol 274 (4) ◽  
pp. E651-E655 ◽  
Author(s):  
Lucinda K. M. Summers ◽  
Peter Arner ◽  
Vera Ilic ◽  
Mo L. Clark ◽  
Sandy M. Humphreys ◽  
...  

We investigated whether two different methods of studying metabolism in adipose tissue, microdialysis and the arteriovenous technique, produced comparable results during the postprandial period. Interstitial glycerol concentrations measured by microdialysis are usually used as an index of intracellular lipolysis, and it is not known whether they also reflect the intravascular action of lipoprotein lipase in the postprandial period. The two techniques were compared in 10 healthy subjects fed mixed meals. Interstitial glycerol concentrations reflected those measured in adipose tissue venous plasma. However, the calculation of the rate of glycerol release from adipose tissue using the microdialysis data differed systematically from that using arteriovenous difference measurement. The former method gave, on average, 40% lower values than the latter one. The difference is probably due to the assumptions that had to be made for the calculation of glycerol release. The two techniques have complementary places in the study of postprandial adipose tissue metabolism, with microdialysis reflecting intracellular hormone-sensitive lipase action rather than intravascular lipoprotein lipase.


Sign in / Sign up

Export Citation Format

Share Document