scholarly journals Crotonis Fructusand Its Constituent, Croton Oil, Stimulate Lipolysis in OP9 Adipocytes

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Mi-Seong Kim ◽  
Ha-Rim Kim ◽  
Hong-Seob So ◽  
Young-Rae Lee ◽  
Hyoung-Chul Moon ◽  
...  

Introduction. Crotonis fructus (CF) is the mature fruit ofCroton tigliumL. and has been used for the treatment of gastrointestinal disturbance in Asia. It is well known that the main component of CF is croton oil (CO). The present study is to investigate the effects of CF extracts (CFE) and CO on lipolysis in OP9 adipocytes.Methods. Glycerol release to the culture supernatants was used as a marker of adipocyte lipolysis.Results. Treatment with various concentrations of CFE and CO stimulates glycerol release in a dose-dependent manner. The increase in glycerol release by CFE is more potent than isoproterenol, which is aβ-adrenergic agonist as a positive control in our system. The increased lipolysis by CFE and CO was accompanied by an increase of phosphorylated hormone sensitive lipase (pHSL) but not nonphosphorylated HSL protein and mRNA. Pretreatment with H89, which is a protein kinase A inhibitor, significantly abolished the CFE- and CO-induced glycerol release in OP9 adipocytes. These results suggest that CFE and CO may be a candidate for the development of a lipolysis-stimulating agent in adipocytes.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jung Won Kang ◽  
Dongwoo Nam ◽  
Kun Hyung Kim ◽  
Jeong-Eun Huh ◽  
Jae-Dong Lee

This study was conducted to explore the antiadipogenic effect and possible mechanism of Gambisan on 3T3-L1 cells. For quality control, Gambisan was standardized by HPLC and the standard compounds ephedrine, epigallocatechin-3-gallate, and caffeine were screened. Cultured 3T3-L1 cells that had been induced to differentiate were treated with various concentrations of Gambisan or its major component extracts (Ephedra intermediaSchrenk,Atractylodes lanceaDC., andThea sinensisL.) for 72 hours for MTT assay to determine cell viability or 10 days for LDH assay, triglyceride assay, DNA content measurement, Oil red O staining, RT-PCR, and western blot. Gambisan significantly inhibited adipogenesis in 3T3-L1 cells by reducing triglyceride contents and lipid accumulation in a dose-dependent manner without obvious cytotoxicity. Viability and DNA content in 3T3-L1 cells treated with Gambisan were significantly higher than cells treated with the major component extracts at every concentration. The anti-adipogenic effects of Gambisan appeared to be mediated by a significant downregulation of the expression of lipoprotein lipase mRNA and PPARγ, C/EBPα, and SREBP-1 protein apart from the expression of hormone-sensitive lipase. Gambisan could act as a possible therapeutic agent for obesity. However, further studies includingin vivoassays and clinical trials are needed to confirm the efficacy, safety and mechanisms of the antiobesity effects of Gambisan.


2013 ◽  
Vol 91 (6) ◽  
pp. 428-434 ◽  
Author(s):  
Jaanki S. Purohit ◽  
Pan Hu ◽  
Guoxun Chen ◽  
Jay Whelan ◽  
Naima Moustaid-Moussa ◽  
...  

Obesity is associated with chronic inflammation. Toll-like receptors (TLR) and NOD-like receptors (NLR) are two families of pattern recognition receptors that play important roles in the immune response and inflammation in adipocytes. Activation of TLR4 has been shown to stimulate lipolysis from adipose tissue or adipocytes. However, effects of activation of nucleotide-oligomerization domain containing protein 1 (NOD1), one of the prominent members of NLRs, on adipocyte lipolysis have not been studied. Here we report that NOD1 activation by the synthetic ligands (Tri-DAP and C12-iEDAP) stimulated lipolysis in 3T3-L1 adipocytes in a time- and dose-dependent manner. C12-iEDAP-induced lipolysis was attenuated with NOD1 siRNA knockdown, demonstrating the specificity of the effects. Moreover, inhibition of the protein kinase A (PKA)/hormone sensitive lipase (HSL) and NF-κB pathways by the pharmacological inhibitors attenuated the lipolytic effects of C12-iEDAP. Furthermore, we show NOD1 activation induced PKA activation independent of cAMP production and inhibition of NF-κB pathways attenuated phosphorylation of selected PKA lipolytic targets (phosphorylation of Perilipin Ser 517 and HSL Ser 563). Taken together, our results demonstrate a novel role of NOD1 activation, via NF-κB/PKA lipolytic activation, in inducing lipolysis in adipocytes and suggest that NOD1 activation may contribute to dyslipidemia in obesity.


1987 ◽  
Vol 166 (5) ◽  
pp. 1597-1602 ◽  
Author(s):  
K Sakai ◽  
T Hattori ◽  
M Matsuoka ◽  
N Asou ◽  
S Yamamoto ◽  
...  

A significant increase in CD25 antigen-positive cells by IL-1 was observed in cells of a patient with M7 acute myelogenous leukemia. Basal proliferation and expression of CD25 antigen by the M7 leukemic cells were inhibited by addition of anti-IL-1 beta antibody in a dose-dependent manner, but not by rabbit anti-IL-1 alpha antibody. Culture supernatants of these leukemic cells contained IL-1 activity, which was specifically inhibited by addition of anti-IL-1 beta antibody, and Northern blot analysis detected intracellular IL-1 beta mRNA. These results indicated that autocrine secretion of IL-1 beta was involved in proliferation of some myelogenous leukemic cells.


2015 ◽  
Vol 87 (2 suppl) ◽  
pp. 1397-1408 ◽  
Author(s):  
GABRIELA L. DA SILVA ◽  
CAROLINA LUFT ◽  
ADROALDO LUNARDELLI ◽  
ROBSON H. AMARAL ◽  
DENIZAR A. DA SILVA MELO ◽  
...  

Several studies have investigated the antinociceptive, immunomodulatory and anti-inflammatory properties of compounds found in the lavender essential oil (LEO), however to date, there is still lack of substantial data. The objective of this study was to assess the antioxidant, anti-inflammatory and antinociceptive effects of lavender essential oil. The 1,1-diphenyl-2-picrylhydrazyl radical decolorization assay was used for antioxidant activity evaluation. The anti-inflammatory activity was tested using two models of acute inflammation: carrageenan-induced pleurisy and croton oil-induced ear edema. The antinociceptive activity was tested using the pain model induced by formalin. LEO has antioxidant activity, which is dose-dependent response. The inflammatory response evoked by carrageenan and by croton oil was reduced through the pre-treatment of animals with LEO. In the pleurisy model, the drug used as positive control, dexamethasone, was more efficacious. However, in the ear swelling, the antiedematogenic effect of the oil was similar to that observed for dexamethasone. In the formalin test, LEO consistently inhibited spontaneous nociception and presented a similar effect to that of tramadol. The results of this study reveal (in vivo) the analgesic and anti-inflammatory activities of LEO and demonstrates its important therapeutic potential.


Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1282-1293 ◽  
Author(s):  
Keiko Sato ◽  
Nobuo Kido ◽  
Yukitaka Murakami ◽  
Charles I. Hoover ◽  
Koji Nakayama ◽  
...  

The periodontopathic bacterium Porphyromonas gingivalis forms pigmented colonies when incubated on blood agar plates as a result of accumulation of μ-oxo haem dimer on the cell surface. Gingipain–adhesin complexes are responsible for production of μ-oxo haem dimer from haemoglobin. Non-pigmented mutants (Tn6-5, Tn7-1, Tn7-3 and Tn10-4) were isolated from P. gingivalis by Tn4351 transposon mutagenesis [Hoover & Yoshimura (1994), FEMS Microbiol Lett 124, 43–48]. In this study, we found that the Tn6-5, Tn7-1 and Tn7-3 mutants carried Tn4351 DNA in a gene homologous to the ugdA gene encoding UDP-glucose 6-dehydrogenase, a gene encoding a putative group 1 family glycosyltransferase and a gene homologous to the rfa gene encoding ADP heptose-LPS heptosyltransferase, respectively. The Tn10-4 mutant carried Tn4351 DNA at the same position as that for Tn7-1. Gingipain activities associated with cells of the Tn7-3 mutant (rfa) were very weak, whereas gingipain activities were detected in the culture supernatants. Immunoblot and mass spectrometry analyses also revealed that gingipains, including their precursor forms, were present in the culture supernatants. A lipopolysaccharide (LPS) fraction of the rfa deletion mutant did not show the ladder pattern that was usually seen for the LPS of the wild-type P. gingivalis. A recombinant chimera gingipain was able to bind to an LPS fraction of the wild-type P. gingivalis in a dose-dependent manner. These results suggest that the rfa gene product is associated with biosynthesis of LPS and/or cell-surface polysaccharides that can function as an anchorage for gingipain–adhesin complexes.


1983 ◽  
Vol 212 (2) ◽  
pp. 379-383 ◽  
Author(s):  
W K Palmer ◽  
T A Kane

Adrenaline, 3-isobutyl-1-methylxanthine (MIX) and dibutyryl cyclic AMP (Bt2 cyclic AMP) stimulated type-L hormone-sensitive lipase (HSL) activity when measurements were made on defatted rat heart powders. These lipolytic agents stimulated the activity of this enzyme in a time- and dose-dependent manner. This activation was reversible, because removal of adrenaline from the perfusate was accompanied by the return of type-L HSL activity to control levels. We have reported [Palmer, Caruso & Oscai (1981) Biochem. J. 198, 159-166] that perfusion with low levels of adrenaline, MIX or Bt2 cyclic AMP reduced type-L HSL activity below control levels when measurements were made in aqueous homogenates. However, in the present study, when activities were measured in acetone/diethyl ether heart powders, all concentrations of these agents studied stimulated enzyme activity, and at no concentration was there enzyme inhibition. These data suggest that acetone/diethyl ether treatment may remove a factor that plays a role in type-L HSL regulation. Type-L HSL activity measured in acetone/diethyl ether powders of control and stimulated rat heart exhibited properties that include alkaline pH optimum, serum requirement, activation by heparin and inhibition by high salt and protamine sulphate. These characteristics, in addition to the stability of the enzyme to treatment with organic solvents, fulfil the requirements for the type-L HSL classification.


2018 ◽  
Vol 5 (4) ◽  
pp. 23
Author(s):  
Bolandpayeh M ◽  
Hassanpour-Ezzati M ◽  
Mousavi Z

Introduction: Enoxaparin is an anticoagulant medication. Anticoagulation inhibits tumor cell-mediated release of angiogenic proteins and diminishes angiogenic response. Angiogenesis is an important event in various cancers such as breast cancer. Angiogenesis provide oxygen and nutrients to tumor cells and causes tumor progression. The aim of the present study was to evaluate the anti-angiogenesis effect of an enoxaparin cream on breast cancer induced by dimethylbenzanthracene in rats. Methods: In this experimental in vivo study, 50 Wistar female rats were divided into negative control (vehicle), positive control (cream base), and 3 groups with enoxaparin treatment (40, 60, and 80 mg/ml). After one month of treatment along with breast cancer induction by dimethylbenzanthracene, breast tissue samples were isolated and stained with hematoxylin-eosin, and tumor growth suppression rate was calculated. Tumor size (length and width) was measured using a clipper, and the tumor volume was calculated using the following formula: V = (L × W × W)/2, where V is tumor volume, W is tumor width, L is tumor length. The data were analyzed using one-way ANOVA and Tukey’s post hoc test. Results: Tumor suppression was significantly increased in enoxaparin treatment groups compared to the positive control group (40 mg/ml of enoxaparin treated versus positive control group; P = 0.017, 60 mg/ml of enoxaparin treated versus positive control; P = 0.015, 40 mg/ml of enoxaparin treated versus positive control; P = 0.009, 60 mg/ml of enoxaparin treated versus 40 mg/ml of enoxaparin treated; P = 0.019, and 80 mg/ml of enoxaparin treated versus 40 mg/ml of enoxaparin treated; P = 0.011 in a dose-dependent manner. Conclusion: Enoxaparin inhibits breast cancer in a dose-dependent manner. The application of enoxaparin cream in patients with breast cancer may considerably reduce tumor growth. 


2019 ◽  
Vol 14 (9) ◽  
pp. 152
Author(s):  
Nguyen Luong Hieu Hoa ◽  
Le Quynh Loan ◽  
Vo Thanh Sang ◽  
Le Van Minh ◽  
Le Viet Dung ◽  
...  

Catfish fat is a high nutrition by-product of seafood processing industry. In this work, catfish fat has been used as a sustainable and economical raw material for sophorolipids production by Candida bombicola. Sophorolipids yield was maximum as 21.8g/L after 7 days of fermentation at 25oC, pH 6, 180 rpm. The obtained sophorolipids was to contained the main component as lactonic sophorolipids, which has been confirmed by Thin layer chromatography (TLC). Sophorolipids also exhibited the ability to resistant Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and showed the ability of free radical scavenging the dose dependent manner with IC50 was 4.45 mg/ml. These results suggested that sophorolipids could be used in health care products and cosmetic. Catfish fat could be used as the low cost hydrophobic carbon source to replace fatty acid for sophorolipids production.


2021 ◽  
Author(s):  
Joy Ifunanya Odimegwu ◽  
Fatiha Oyebola Olabisi

Thevetia peruviana (Pers.) K.Schum. (Apocynaceae) seeds are known to possess cardioactive glycosides such as thevetin A, thevetin B, nerifolin etc. They are also used locally for general pain relief for which there is no scientific evidence to our knowledge. Arthralgia is regarded generally as pain without inflammation. It is endemic in the society and sufferers continue to imbibe pain relieving drugs in their tons all over the world. Analgesic activity test was carried out using the formalin-induced pain models, at 0.1g, 0.2g and 0.3g/kg doses of n-hexane extracts of Thevetia peruviana seeds (HTp) in Wistar mice. Diclofenac was used as positive control. Acute toxicity test was carried out at doses of 1000, 2500 and 5000 mg/kg weight of test subject. It was observed that HTp at concentrations of 0.1g, 0.2g and 0.3g/kg showed significant analgesic effect at compared to the control. The percentage inhibition observed was 29.60%, 44.80% and 50.72% for the early pain phase and 100% for the late pain phase respectively, indicating HTps NSAID-like property. HTp showed the highest percentage inhibition at 300 mg/kg (50.72 %) and significant; P < 0.005 pain reduction. HTp did not produce any toxicity up to a dose of 5000 mg/kg weight which is very interesting as the seeds are known for their toxicity due to the cardiac glycoside presence. The results of the study suggest that HTp does indeed relieve pain significantly in a dose dependent manner, thus justifying its use in management of arthralgia. Keywords: Arthralgia, Herbal medicine, Pain,Thevetia peruviana, yellow oleander


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2833-2833
Author(s):  
Amanda Przespolewski ◽  
Scott Portwood ◽  
Jason Den Haese ◽  
Demi Lewis ◽  
Eunice S. Wang

Abstract Background: Successful immunotherapeutic approaches for acute myeloid leukemia (AML) have yet to be developed. We hypothesized that targeting both the innate and adaptive immune responses in leukemic hosts would elicit significant anti-tumor activity with lesser toxicities than chemotherapy. To test this, we evaluated the efficacy of immune checkpoint inhibition (murine anti-PD-1 antibody (ab)) alone and in combination with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an innate immune agonist and anti-vascular agent, in an immunocompetent model of murine AML. Methods: Expression of PD-L1 was assessed by flow cytometry on the murine AML cell line, C1498, alone and following treatment with vehicle, DMXAA or interferon-gamma (positive control). A LEGEND MAX mouse ELISA kit was utilized to measure IL-6 and IFN-β. C57BL/6 mice were inoculated with stably transfected C1498 murine AML cells expressing luciferase and the fluorescent protein DSRed2. Once disease was established, animals were treated with vehicle, DMXAA (20 mg/kg every four days x 7 weeks), anti-murine PD-1 antibody (10 mg/kg every 3 days x 4 doses) or DMXAA + anti-PD-1 antibody (same doses). Animals underwent weekly clinical assessments, weights, and bioluminescent imaging for disease burden. Overall study endpoints were time to morbidity and differences in leukemia disease burden as compared with vehicle-treated controls. Mice were euthanized on day 15 after injection of C1498 cells (8 days following treatment) for collection of plasma, bone marrow, liver and spleen samples for tumor burden, activated T-cells. Results: DMXAA doses (ranging from 1-100 μg/ml) inhibited C1498 in vitro cell growth at 48 hours (48h) in a dose dependent manner. Treatment of C1498 cells in culture with escalating doses of DMXAA (1-100μg/ml) or IFN-gamma (positive control) induced higher PD-L1 expression on these AML cells consistent with direct immunomodulatory effects. Furthermore, C1498 cells exposed to higher doses of DMXAA (10-100μg/ml) for 48h produced measurably higher levels of IL-6 and IFN-β expression in cell supernatants. We then examined the effects of DMXAA, anti-PD-1 ab, or the combination of DMXAA + anti-PD-1 ab treatment in vivo in C57BL/6 mice systemically engrafted with C1498-luciferase AML cells. Treatment overall was well tolerated and resulted in significantly decreased disease burden as measured by total body bioluminescence vs. vehicle controls (p<0.05). Median time to morbidity was significantly decreased in all treatment arms as compared with controls: vehicle = 28 days, DMXAA = 32 days, anti-PD-1 ab = 39 days, and combination DMXAA + anti-PD-1 ab = 53 days (p<0.05). Combination therapy resulted in significantly longer overall survival than single agent therapy (DMXAA vs. DMXAA+anti-PD-1 ab, p=0.032; anti-PD1 ab vs. DMXAA+antii-PD-1 ab p=0.038)(n=total 13-16 mice per group) (representative data shown in Figure 1). Therapy with DMXAA alone and in combination with anti-PD-1 ab was associated with markedly higher PD-1, PD-L1, and PD-L2 expression levels in bone marrow cells harvested from leukemic mice 48h after treatment. Significantly higher numbers of activated T cells were also identified in the bone marrow and spleen of leukemic mice following two weeks of DMXAA therapy alone or in combination with anti-PD-1 ab. Additional in vivo measurements of systemic cytokine levels following therapy are underway. Conclusions: Here we demonstrate that the combination of an innate immune agonist (DMXAA) with an immune checkpoint inhibitor (anti-PD-1 ab) improved anti-leukemic effects in a preclinical AML model. In vitro DMXAA therapy inhibited murine AML growth in a dose dependent manner, enhanced PD-L1 expression, and induced leukemic production of cytokines (IL-6, IFN-β). In vivo combination DMXAA and anti-PD-1 ab therapy in an immunocompetent murine AML model increased activated host T cell numbers and marrow PD-1/L1/L2 expression in conjunction with decreased tumor burden and prolonged overall survival. These studies may pave the way for future clinical trials evaluating this novel immunomodulatory strategy in AML patients. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document