scholarly journals Application of CO2-Switchable Oleic-Acid-Based Surfactant for Reducing Viscosity of Heavy Oil

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6273
Author(s):  
Lulu Liu ◽  
Shuai He ◽  
Lu Tang ◽  
Shu Yang ◽  
Tao Ma ◽  
...  

CO2-switchable oligomeric surfactants have good viscosity-reducing properties; however, the complex synthesis of surfactants limits their application. In this study, a CO2-switchable “pseudo”-tetrameric surfactant oleic acid (OA)/cyclic polyamine (cyclen) was prepared by simple mixing and subsequently used to reduce the viscosity of heavy oil. The surface activity of OA/cyclen was explored by a surface tensiometer and a potential for viscosity reduction was revealed. The CO2 switchability of OA/cyclen was investigated by alternately introducing CO2 and N2, and OA/cyclen was confirmed to exhibit a reversible CO2-switching performance. The emulsification and viscosity reduction analyses elucidated that a molar ratio of OA/cyclen of 4:1 formed the “pseudo”-tetrameric surfactants, and the emulsions of water and heavy oil with OA/cyclen have good stability and low viscosity and can be destabilized quickly by introducing CO2. The findings reported in this study reveal that it is feasible to prepare CO2-switchable pseudo-tetrameric surfactants with viscosity-reducing properties by simple mixing, thus providing a pathway for the emulsification and demulsification of heavy oil by using the CO2-switchable “pseudo”-oligomeric surfactants.

2012 ◽  
Vol 268-270 ◽  
pp. 547-550
Author(s):  
Qing Wang Liu ◽  
Xin Wang ◽  
Zhen Zhong Fan ◽  
Jiao Wang ◽  
Rui Gao ◽  
...  

Liaohe oil field block 58 for Huancai, the efficiency of production of thickened oil is low, and the efficiency of displacement is worse, likely to cause other issues. Researching and developing an type of Heavy Oil Viscosity Reducer for exploiting. The high viscosity of W/O emulsion changed into low viscosity O/W emulsion to facilitate recovery, enhanced oil recovery. Through the experiment determine the viscosity properties of Heavy Oil Viscosity Reducer. The oil/water interfacial tension is lower than 0.0031mN•m-1, salt-resisting is good. The efficiency of viscosity reduction is higher than 90%, and also good at 180°C.


RSC Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1750-1761
Author(s):  
M. M. Abdelhamid ◽  
S. A. Rizk ◽  
M. A. Betiha ◽  
S. M. Desouky ◽  
A. M. Alsabagh

This study focuses on preparing a new family of organometallic surfactants based on five ion complexes, namely Co2+, Ni2+, Cu2+, Fe3+, and Mn2+.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Carlos Corona-García ◽  
Alejandro Onchi ◽  
Arlette A. Santiago ◽  
Araceli Martínez ◽  
Daniella Esperanza Pacheco-Catalán ◽  
...  

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4′-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4′-diamino-2,2′-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm−1 at 30 °C after activation of the polymer membrane.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3317
Author(s):  
Maria Carolina Pereira Gonçalves ◽  
Jéssica Cristina Amaral ◽  
Roberto Fernandez-Lafuente ◽  
Ruy de Sousa Junior ◽  
Paulo Waldir Tardioli

In this paper, we have performed the Lipozyme 435-catalyzed synthesis of xylose oleate in methyl ethyl ketone (MEK) from xylose and oleic acid. The effects of substrates’ molar ratios, reaction temperature, reaction time on esterification rates, and Lipozyme 435 reuse were studied. Results showed that an excess of oleic acid (xylose: oleic acid molar ratio of 1:5) significantly favored the reaction, yielding 98% of xylose conversion and 31% oleic acid conversion after 24 h-reaction (mainly to xylose mono- and dioleate, as confirmed by mass spectrometry). The highest Lipozyme 435 activities occurred between 55 and 70 °C. The predicted Ping Pong Bi Bi kinetic model fitted very well to the experimental data and there was no evidence of inhibitions in the range assessed. The reaction product was purified and presented an emulsion capacity close to that of a commercial sugar ester detergent. Finally, the repeated use of Lipozyme 435 showed a reduction in the reaction yields (by 48 and 19% in the xylose and oleic acid conversions, respectively), after ten 12 h-cycles.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 600
Author(s):  
Thomas Ferrand ◽  
Damien Deldicque

Tectonic plates are thought to move above the asthenosphere due to the presence of accumulated melts or volatiles that result in a low-viscosity layer, known as lithosphere–asthenosphere boundary (LAB). Here, we report experiments suggesting that the plates may slide through a solid-state mechanism. Ultrafine-grained aggregates of Mg2GeO4 and minor MgGeO3 were synthetized using spark plasma sintering (SPS) and deformed using a 1-atm deformation rig between 950 °C and 1250 °C. For 1000 < T < 1150 °C, the derivative of the stress–strain relation of the material drops down to zero once a critical stress as low as 30–100 MPa is reached. This viscosity reduction is followed by hardening. The deformation curves are consistent with what is commonly observed in steels during the shear-induced transformation from austenite to martensite, the final material being significantly harder. This is referred to as TRansformation-Induced Plasticity (TRIP), widely observed in metal alloys (TRIP alloys). It should be noted that such enhanced plasticity is not necessarily due to a phase transition, but could consist of any kind of transformation, including structural transformations. We suspect a stress-induced grain-boundary destabilization. This could be associated to the transient existence of a metastable phase forming in the vicinity of grain boundaries between 1000 and 1150 °C. However, no such phase can be observed in the recovered samples. Whatever its nature, the rheological transition seems to occur as a result of a competition between diffusional processes (i.e., thermally activated) and displacive processes (i.e., stress-induced and diffusionless). Consequently, the material would be harder at 1200 °C than at 1100 °C thanks to diffusion that would strengthen thermodynamically stable phases or grain-boundary structures. This alternative scenario for the LAB would not require volatiles. Instead, tectonic plates may slide on a layer in which the peridotite is constantly adjusting via a grain-boundary transformation.


Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06420
Author(s):  
Caroline Azevedo Martins ◽  
Maria Conceição B dos Santos ◽  
Cassiano Felippe Gonçalves-de-Albuquerque ◽  
Hugo Caire Castro-Faria-Neto ◽  
Mauro Velho Castro-Faria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document