scholarly journals Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6745
Author(s):  
Yueyue Wang ◽  
Yufeng Shi ◽  
Kaiyuan Li ◽  
Dong Yang ◽  
Nana Liu ◽  
...  

The 2-oxoglutarate-dependent dioxygenase (2-OGD) superfamily is one of the largest protein families in plants. The main oxidation reactions they catalyze in plants are hydroxylation, desaturation, demethylation, epimerization, and halogenation. Four members of the 2-OGD superfamily, i.e., flavonone 3β-hydroxylase (F3H), flavones synthase I (FNS I), flavonol synthase (FLS), and anthocyanidin synthase (ANS)/leucoanthocyanidin dioxygenase (LDOX), are present in the flavonoid pathway, catalyzing hydroxylation and desaturation reactions. In this review, we summarize the recent research progress on these proteins, from the discovery of their enzymatic activity, to their functional verification, to the analysis of the response they mediate in plants towards adversity. Substrate diversity analysis indicated that F3H, FNS Ⅰ, ANS/LDOX, and FLS perform their respective dominant functions in the flavonoid pathway, despite the presence of functional redundancy among them. The phylogenetic tree classified two types of FNS Ⅰ, one mainly performing FNS activity, and the other, a new type of FNS present in angiosperms, mainly involved in C-5 hydroxylation of SA. Additionally, a new class of LDOXs is highlighted, which can catalyze the conversion of (+)-catechin to cyanidin, further influencing the starter and extension unit composition of proanthocyanidins (PAs). The systematical description of the functional diversity and evolutionary relationship among these enzymes can facilitate the understanding of their impacts on plant metabolism. On the other hand, it provides molecular genetic evidence of the chemical evolution of flavonoids from lower to higher plants, promoting plant adaptation to harsh environments.

2021 ◽  
Vol 11 (8) ◽  
pp. 3368
Author(s):  
Liping Wang ◽  
Jianshe Ma ◽  
Ping Su ◽  
Jianwei Huang

High-resolution pixel LED headlamps are lighting devices that can produce high-resolution light distribution to adapt to road and traffic conditions, intelligently illuminate traffic areas, and assist drivers. Due to the complexity of roads and traffic conditions, the functional diversity of high-resolution pixel LEDs headlamps and traffic safety has come into question and is the subject of in-depth research conducted by car manufacturers and regulators. We summarize the current possible functions of high-resolution pixel LED headlamps and analyze ways in which they could be improved. This paper also discusses the prospect of new technologies in the future.


2005 ◽  
Vol 17 (4) ◽  
pp. 1268-1278 ◽  
Author(s):  
R. Todd Leister ◽  
Douglas Dahlbeck ◽  
Brad Day ◽  
Yi Li ◽  
Olga Chesnokova ◽  
...  

1997 ◽  
Vol 183 (4) ◽  
pp. 424-431 ◽  
Author(s):  
Edwin C. A. Abeln ◽  
Vincent T. H. B. M. Smit ◽  
Johannes W. Wessels ◽  
Wiljo J. F. de Leeuw ◽  
Cees J. Cornelisse ◽  
...  

2003 ◽  
Vol 127 (12) ◽  
pp. 1565-1572
Author(s):  
Susan H. Bernacki ◽  
Daniel H. Farkas ◽  
Wenmei Shi ◽  
Vivian Chan ◽  
Yenbou Liu ◽  
...  

Abstract Context.—Bioelectronic sensors, which combine microchip and biological components, are an emerging technology in clinical diagnostic testing. An electronic detection platform using DNA biochip technology (eSensor) is under development for molecular diagnostic applications. Owing to the novelty of these devices, demonstrations of their successful use in practical diagnostic applications are limited. Objective.—To assess the performance of the eSensor bioelectronic method in the validation of 6 Epstein-Barr virus–transformed blood lymphocyte cell lines with clinically important mutations for use as sources of genetic material for positive controls in clinical molecular genetic testing. Two cell lines carry mutations in the CFTR gene (cystic fibrosis), and 4 carry mutations in the HFE gene (hereditary hemochromatosis). Design.—Samples from each cell line were sent for genotype determination to 6 different molecular genetic testing facilities, including the laboratory developing the DNA biochips. In addition to the bioelectronic method, at least 3 different molecular diagnostic methods were used in the analysis of each cell line. Detailed data were collected from the DNA biochip output, and the genetic results were compared with those obtained using the more established methods. Results.—We report the successful use of 2 applications of the bioelectronic platform, one for detection of CFTR mutations and the other for detection of HFE mutations. In all cases, the results obtained with the DNA biochip were in concordance with those reported for the other methods. Electronic signal output from the DNA biochips clearly differentiated between mutated and wild-type alleles. This is the first report of the use of the cystic fibrosis detection platform. Conclusions.—Bioelectronic sensors for the detection of disease-causing mutations performed well when used in a “real-life” situation, in this case, a validation study of positive control blood lymphocyte cell lines with mutations of public health importance. This study illustrates the practical potential of emerging bioelectronic DNA detection technologies for use in current molecular diagnostic applications.


2021 ◽  
Author(s):  
Seung‐Hyun Jung ◽  
Hyeon‐Chun Park ◽  
Youn Jin Choi ◽  
Sang Yong Song ◽  
Yeun‐Jun Chung ◽  
...  

2021 ◽  
Author(s):  
Laurence Howe ◽  
David Evans ◽  
Gibran Hemani ◽  
George Davey Smith ◽  
Neil Martin Davies

Estimating effects of parental and sibling genotypes (indirect genetic effects) can provide insight into how the family environment influences phenotypic variation. There is growing molecular genetic evidence for effects of parental phenotypes on their offspring (e.g. parental educational attainment), but the extent to which siblings affect each other is currently unclear.Here we used data from samples of unrelated individuals, without (singletons) and with biological full-siblings (non-singletons), to investigate and estimate sibling effects. Indirect genetic effects of siblings increase (or decrease) the covariance between genetic variation and a phenotype. It follows that differences in genetic association estimates between singletons and non-singletons could indicate indirect genetic effects of siblings.We used UK Biobank data to estimate polygenic risk score (PRS) associations for height, BMI and educational attainment in singletons (N = 50,143) and non-singletons (N = 328,549). The educational attainment PRS association estimate was 12% larger (95% C.I. 3%, 21%) in the non-singleton sample than in the singleton sample, but the height and BMI PRS associations were consistent. Birth order data suggested that the difference in educational attainment PRS associations was driven by individuals with older siblings rather than firstborns. The relationship between number of siblings and educational attainment PRS associations was non-linear; PRS associations were 24% smaller in individuals with 6 or more siblings compared to the rest of the sample (95% C.I. 11%, 38%). We estimate that a 1 SD increase in sibling educational attainment PRS corresponds to a 0.025 year increase in the index individual’s years in schooling (95% C.I. 0.013, 0.036).Our results suggest that older siblings influence the educational attainment of younger siblings, adding to the growing evidence that effects of the environment on phenotypic variation partially reflect social effects of germline genetic variation in relatives.


2014 ◽  
Vol 1065-1069 ◽  
pp. 114-118
Author(s):  
Shuo Fu Tian ◽  
Chao Jin Lu ◽  
Yuan Wang

It is the components, living things evolution processes, development environments, distribution layers and the earliest time for coal series formation that are investigated and studied in detail based on the author’s graduation thesis, the “Geobiology” , the “China coal petrology” and the other’s some references in this paper. And it is considered that mainly two types of the Coal Series might be distinguish in the geologic history in China, respectively consisted of the lower organisms (especially the lower plants, blue-green algae) and higher organisms (especially the higher plants, pteridophyta, gymnosperms, Anthophyta). Meanwhile, the conclusions can be drawn that the development of the organisms is not only controlled by the environments, on the other hand, the environments and their sediments are also affected by the ecologies of the organisms. So the coal bed or coal series can be used as the marks of the environment explanation, perhaps having some Significances of Geobiology. In additional, the relationship with an unconformity or disconformity is discussed here, too.


2010 ◽  
Vol 108 (3) ◽  
pp. 703-708 ◽  
Author(s):  
Chunhua Zhou ◽  
Keng Yuan ◽  
Xiaoli Tang ◽  
Ningyan Hu ◽  
Weidong Peng

Sign in / Sign up

Export Citation Format

Share Document