scholarly journals High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7511
Author(s):  
Guangyao Lin ◽  
Yang Feng ◽  
Xiaoqing Cai ◽  
Caihong Zhou ◽  
Lijun Shao ◽  
...  

Relaxin/insulin-like family peptide receptor 3 (RXFP3) belongs to class A G protein-coupled receptor family. RXFP3 and its endogenous ligand relaxin-3 are mainly expressed in the brain with important roles in the regulation of appetite, energy metabolism, endocrine homeostasis and emotional processing. It is therefore implicated as a potential target for treatment of various central nervous system diseases. Since selective agonists of RXFP3 are restricted to relaxin-3 and its analogs, we conducted a high-throughput screening campaign against 32,021 synthetic and natural product-derived compounds using a cyclic adenosine monophosphate (cAMP) measurement-based method. Only one compound, WNN0109-C011, was identified following primary screening, secondary screening and dose-response studies. Although displayed agonistic effect in cells overexpressing the human RXFP3, it also showed cross-reactivity with the human RXFP4. This hit compound may provide not only a chemical probe to investigate the function of RXFP3/4, but also a novel scaffold for the development of RXFP3/4 agonists.

2000 ◽  
Vol 5 (4) ◽  
pp. 239-247 ◽  
Author(s):  
Anthony C. Chiulli ◽  
Karen Trompeter ◽  
Michelle Palmer

The second messenger 3′, 5′-cyclic AMP (cAMP) is a highly regulated molecule that is governed by G protein-coupled receptor activation and other cellular processes. Measurement of cAMP levels in cells is widely used as an indicator of receptor function in drug discovery applications. We have developed a nonradioactive ELISA for the accurate quantitation of cAMP levels produced in cell-based assays. This novel competitive assay utilizes chemiluminescent detection that affords both a sensitivity and a dynamic assay range that have not been previously reported with any other assay methodologies. The assay has been automated in 96- and 384-well formats, providing assay data that are equivalent to, if not better than, data generated by hand. This report demonstrates the application of this novel assay technology to the functional analysis of a specific G protein-coupled receptor, neuropeptide receptor Y1, on SK-N-MC cells. Our data indicate the feasibility of utilizing this assay methodology for monitoring cAMP levels in a wide range of functional cell-based assays for high throughput screening.


2005 ◽  
Vol 10 (7) ◽  
pp. 730-737 ◽  
Author(s):  
Ronald I. W. Osmond ◽  
Antony Sheehan ◽  
Romana Borowicz ◽  
Emma Barnett ◽  
Georgina Harvey ◽  
...  

Discovery of novel agonists and antagonists for G protein–coupled receptors (GPCRs) relies heavily on cell-based assays because determination of functional consequences of receptor engagement is often desirable. Currently, there are several key parameters measured to achieve this, including mobilization of intracellular Ca2+ and formation of cyclic adenosine monophosphate or inositol triphosphate. However, no single assay platform is suitable for all situations, and all of the assays have limitations. The authors have developed a new high-throughput homogeneous assay platform for GPCR discovery as an alternative to current assays, which employs detection of phosphorylation of the key signaling molecule p42/44 MAP kinase (ERK 1/2). The authors show that ERK 1/2 is consistently activated in cells stimulated by Gq-coupled GPCRs and provides a new high-throughput platform for screening GPCR drug candidates. The activation of ERK 1/2 in Gq-coupled GPCR systems generates comparable pharmacological data for receptor agonist and antagonist data obtained by other GPCR activation measurement techniques.


2019 ◽  
Vol 116 (23) ◽  
pp. 11508-11517 ◽  
Author(s):  
Rana N. Ozdeslik ◽  
Lauren E. Olinski ◽  
Melissa M. Trieu ◽  
Daniel D. Oprian ◽  
Elena Oancea

Opsins form a family of light-activated, retinal-dependent, G protein-coupled receptors (GPCRs) that serve a multitude of visual and nonvisual functions. Opsin 3 (OPN3 or encephalopsin), initially identified in the brain, remains one of the few members of the mammalian opsin family with unknown function and ambiguous light absorption properties. We recently discovered that OPN3 is highly expressed in human epidermal melanocytes (HEMs)—the skin cells that produce melanin. The melanin pigment is a critical defense against ultraviolet radiation (UVR), and its production is mediated by the Gαs-coupled melanocortin 1 receptor (MC1R). The physiological function and light sensitivity of OPN3 in melanocytes are yet to be determined. Here, we show that in HEMs, OPN3 acts as a negative regulator of melanin production by modulating the signaling of MC1R. OPN3 negatively regulates the cyclic adenosine monophosphate (cAMP) response evoked by MC1R via activation of the Gαi subunit of G proteins, thus decreasing cellular melanin levels. In addition to their functional relationship, OPN3 and MC1R colocalize at both the plasma membrane and in intracellular structures, and can form a physical complex. Remarkably, OPN3 can bind retinal, but does not mediate light-induced signaling in melanocytes. Our results identify a function for OPN3 in the regulation of the melanogenic pathway in epidermal melanocytes; we have revealed a light-independent function for the poorly characterized OPN3 and a pathway that greatly expands our understanding of melanocyte and skin physiology.


2010 ◽  
Vol 18 (4) ◽  
pp. 6-8
Author(s):  
Stephen W. Carmichael

Some of the receptors on the surface of cardiac muscle cells (cardiomyocytes) mediate the response of these cells to catecholamines by causing the production of the common second messenger cyclic adenosine monophosphate (cAMP). An example of such receptors are the β1- and β2-adrenergic receptors (βARs) that are heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors. Selective stimulation of these two receptor subtypes leads to distinct physiological and pathophysiological responses, but their precise location on the surface of cardiomyocytes has not been correlated with these responses. In an ingenious combination of techniques, Viacheslav Nikolaev, Alexey Moshkov, Alexander Lyon, Michele Miragoli, Pavel Novak, Helen Paur, Martin Lohse, Yuri Korchev, Sian Harding, and Julia Gorelik have mapped the function of these receptors for the first time.


1999 ◽  
Vol 4 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Ilona Kariv ◽  
Michelle E. Stevens ◽  
Davette L. Behrens ◽  
Kevin R. Oldenburg

Impairment of G protein—coupled seven-transmembrane (7 TM) receptor function has been implicated in a variety of different pathologic conditions, suggesting that the discovery of specific antagonists may lead to the development of successful therapeutic agents. The effect of different agents on receptor-ligand interaction is often measured directly in a receptor binding assay; however, this assay format can be time consuming and does not detect agents that interact at sites distal to the native ligand binding site. Cyclic adenosine monophospate (cAMP) represents a ubiquitous second messenger generated in response to ligand binding to many 7 TM receptors. The present study describes the practical adaptation of scintillation proximity methodology, using FlashPlate™ (NEN Life Sciences, Boston, MA) technology to evaluate cAMP production. The bioassay is based on competition between endogenously produced cAMP and exogenously added radiolabeled [125I]-cAMP. Cyclic AMP capture is mediated through an anti-cAMP antibody onto a microplate well surface. Removal of unbound radioligand is not necessary because only ligand within ≤20 μm of the plate surface is detected due to the proximity effect. The data indicate that the use of scintillation proximity technology allows accurate and specific evaluation of G protein—coupled receptor function as measured by cAMP production and is suitable for high throughput screening.


Sign in / Sign up

Export Citation Format

Share Document