scholarly journals Aptamers: Potential Diagnostic and Therapeutic Agents for Blood Diseases

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 383
Author(s):  
Maher M. Aljohani ◽  
Dana Cialla-May ◽  
Jürgen Popp ◽  
Raja Chinnappan ◽  
Khaled Al-Kattan ◽  
...  

Aptamers are RNA/DNA oligonucleotide molecules that specifically bind to a targeted complementary molecule. As potential recognition elements with promising diagnostic and therapeutic applications, aptamers, such as monoclonal antibodies, could provide many treatment and diagnostic options for blood diseases. Aptamers present several superior features over antibodies, including a simple in vitro selection and production, ease of modification and conjugation, high stability, and low immunogenicity. Emerging as promising alternatives to antibodies, aptamers could overcome the present limitations of monoclonal antibody therapy to provide novel diagnostic, therapeutic, and preventive treatments for blood diseases. Researchers in several biomedical areas, such as biomarker detection, diagnosis, imaging, and targeted therapy, have widely investigated aptamers, and several aptamers have been developed over the past two decades. One of these is the pegaptanib sodium injection, an aptamer-based therapeutic that functions as an anti-angiogenic medicine, and it is the first aptamer approved by the U.S. Food and Drug Administration (FDA) for therapeutic use. Several other aptamers are now in clinical trials. In this review, we highlight the current state of aptamers in the clinical trial program and introduce some promising aptamers currently in pre-clinical development for blood diseases.

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1803 ◽  
Author(s):  
Amira Mbarek ◽  
Ghina Moussa ◽  
Jeanne Leblond Chain

Synthetic acyclic receptors, composed of two arms connected with a spacer enabling molecular recognition, have been intensively explored in host-guest chemistry in the past decades. They fall into the categories of molecular tweezers, clefts and clips, depending on the geometry allowing the recognition of various guests. The advances in synthesis and mechanistic studies have pushed them forward to pharmaceutical applications, such as neurodegenerative disorders, infectious diseases, cancer, cardiovascular disease, diabetes, etc. In this review, we provide a summary of the synthetic molecular tweezers, clefts and clips that have been reported for pharmaceutical applications. Their structures, mechanism of action as well as in vitro and in vivo results are described. Such receptors were found to selectively bind biological guests, namely, nucleic acids, sugars, amino acids and proteins enabling their use as biosensors or therapeutics. Particularly interesting are dynamic molecular tweezers which are capable of controlled motion in response to an external stimulus. They proved their utility as imaging agents or in the design of controlled release systems. Despite some issues, such as stability, cytotoxicity or biocompatibility that still need to be addressed, it is obvious that molecular tweezers, clefts and clips are promising candidates for several incurable diseases as therapeutic agents, diagnostic or delivery tools.


2000 ◽  
Vol 1 (2) ◽  
pp. 95-102 ◽  
Author(s):  
Roongroje Thanawongnuwech ◽  
Patrick G. Halbur ◽  
Eileen L. Thacker

AbstractThe objective of this article is to summarize the current state of knowledge of the complex interaction of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine pulmonary intravascular macrophages (PIMs). PIMs play an important role in pulmonary surveillance, and in the past few years we have investigated their role in PRRSV infection. PRRSV antigens and nucleic acids have been demonstrated in PIMs bothin vitroandin vivo. Examination of cultured PIMs infected with PRRSV revealed the accumulation of viral particles in the smooth-walled vesicles. PRRSV-infected PIMsin vitroyielded a virus titer similar to pulmonary alveolar macrophages. PRRSV infection induces either apoptosis or cell lysis of PIMs. Thein vitrobactericidal activity of PRRSV-infected PIMs is significantly decreased. Phagocytic activity of PIMs, as measured by pulmonary copper clearance, is significantly decreased in PRRSV-infected pigs. This evidence supports the hypothesis that PRRSV-induced damage to PIMs results in increased susceptibility to bacteremic diseases. Recent studies with PRRSV andStreptococcus suiscoinfection confirmed that PRRSV predisposes pigs toS. suisinfection and bacteremia. These results could explain the increase in bacterial respiratory diseases and septicemias observed in PRRSV-infected pigs.


2019 ◽  
Vol 19 (10) ◽  
pp. 788-795
Author(s):  
Weibin Li ◽  
Meng Zhao ◽  
Huihui Yan ◽  
Kaiyu Wang ◽  
XIaopeng lan

: Aptamers are single-stranded DNA or RNA oligonucleotides generated by a novel in vitro selection technique termed Systematic evolution of ligands by exponential enrichment (SELEX). During the past two decades, various aptamer drugs have been developed and many of them have entered into clinical trials. : In the present review, we focus on aptamers as potential therapeutics for hematological diseases, including anemia of chronic inflammation (ACI) and anemia of chronic disease (ACD), hemophilia, thrombotic thrombocytopenic purpura (TTP) or VWD type-2B, and sickle cell disease (SCD), in particular, those that have entered into clinical trials


2020 ◽  
Vol 29 (157) ◽  
pp. 200268
Author(s):  
Ariane Lechasseur ◽  
Mathieu C. Morissette

Vaping has become increasingly popular over the past decade. This pragmatic review presents the published biological effects of electronic cigarette vapour inhalation with a focus on the pulmonary effects. Special attention has been devoted to providing the documented effects specific to each major ingredient, namely propylene glycol/glycerol, nicotine and flavouring agents. For each ingredient, findings are divided according to the methodology used, being in vitro studies, animal studies and clinical studies. Finally, we provide thoughts and insights on the current state of understanding of the pulmonary effects of vaping, as well as novel research avenues and methodologies.


2018 ◽  
Vol 20 (1) ◽  
pp. 50 ◽  
Author(s):  
Xiao Men ◽  
Fan Wang ◽  
Guo-Qiang Chen ◽  
Hai-Bo Zhang ◽  
Mo Xian

Natural rubber is a kind of indispensable biopolymers with great use and strategic importance in human society. However, its production relies almost exclusively on rubber-producing plants Hevea brasiliensis, which have high requirements for growth conditions, and the mechanism of natural rubber biosynthesis remains largely unknown. In the past two decades, details of the rubber chain polymerization and proteins involved in natural rubber biosynthesis have been investigated intensively. Meanwhile, omics and other advanced biotechnologies bring new insight into rubber production and development of new rubber-producing plants. This review summarizes the achievements of the past two decades in understanding the biosynthesis of natural rubber, especially the massive information obtained from the omics analyses. Possibilities of natural rubber biosynthesis in vitro or in genetically engineered microorganisms are also discussed.


2020 ◽  
Vol 2 (4) ◽  
pp. 243-271
Author(s):  
Salina Nicoleau ◽  
Beata Wojciak-Stothard

Pulmonary Hypertension (PH) is a multifactorial and lethal disease, characterised by elevated pulmonary arterial pressure and progressive right heart failure. PH pathobiology rests on four pillars: vascular remodelling, vasoconstriction, inflammation and thrombosis. While vascular and inflammatory cells have been the focus of PH research over the past decades, platelets have received relatively less attention, despite their associations with key pathophysiological processes of the disease. Platelets contain a wide range of vasoactive, inflammatory and pro-thrombotic mediators, likely to promote PH development and progression. There is currently no cure for PH, and platelet-associated pathways may help identify new therapeutic strategies. This review summarises available evidence on the role of platelets in different forms of PH, and comments on the current state of platelet-targeting therapies. It also describes the latest advances in the in vitro technologies that enable exploration of platelet function under dynamic and physiologically relevant conditions. Doi: 10.28991/SciMedJ-2020-0204-7 Full Text: PDF


2014 ◽  
Vol 10 ◽  
pp. 1906-1913 ◽  
Author(s):  
Nico Rublack ◽  
Sabine Müller

Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document