scholarly journals Na-Montmorillonite Vs. Organically Modified Montmorillonite as Essential Oil Nanocarriers for Melt-Extruded Low-Density Poly-Ethylene Nanocomposite Active Packaging Films with a Controllable and Long-Life Antioxidant Activity

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1027
Author(s):  
Aris Giannakas

Nowadays, active packaging is becoming significant for the extension of the shelf life of food products via the incorporation of raw nanomaterials such as nanoclays and bioactive compounds such as essential oils (EO). This study aims to study the performance of the sodium montmorillonite (NaMt) and organically modified montmorillonite (OrgMt) as thyme (TO), oregano (OO), and basil (BO) essential oil (EO) control release nanocarriers in low-density poly-ethylene (LDPE) active films. NaMt and OrgMt nanofillers are modified with low (20 wt.%), medium (40 wt.%), and high (80 wt.%) nominal contents of TO, OO, and BO. The novel active packaging films were tested using the X-ray diffraction method (XRD), tensile, water, and oxygen barrier properties, and antioxidant activity tests. For the two most active packaging films, the lipid oxidation of chicken breast fillets estimated by the thiobarbituric-acid-reacting substances (TBARS) method. Overall study shows that both NaMtEO-based and OrgMt-based films exhibited controllable and sustained antioxidant activity. All films retained up to 50–70% of their antioxidant activity after six months of incubation. OrgMtEO-based LDPE films showed more significance applied as active packaging films than NaMtEO-based LDPE films because of their highest tensile and barrier properties.

2016 ◽  
Vol 30 (4) ◽  
pp. 504-520 ◽  
Author(s):  
Juliana A de Lima ◽  
Lays B Fitaroni ◽  
Daniel VA Chiaretti ◽  
Manuela LQA Kaneko ◽  
Sandra A Cruz

The aim of this work is to investigate the degradation of low molar mass poly(ethylene terephthalate) (PET)/organically modified montmorillonite (OMMT) clay nanocomposites prepared by melt processing. The rheological behavior in combination with transmission electron microscopic images suggests an intercalation and therefore a percolating network. Furthermore, the results indicate that the increase of organoclay content caused a degradation of PET during processing of PET/OMMT nanocomposites, once it was observed the PET molar mass decreases. The effect mentioned could be attributed to an increase of Brønsted acidic sites on the platelet surface, which is produced by the Hofmann elimination reaction of ammonium, and also the presence of residual metal compounds on clay surface might possibly favored the polymer matrix degradation process.


2013 ◽  
Vol 276 ◽  
pp. 502-511 ◽  
Author(s):  
Shipeng Zhu ◽  
Hongmei Peng ◽  
Jinyao Chen ◽  
Huilin Li ◽  
Ya Cao ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3227 ◽  
Author(s):  
Katherine E. Rivadeneira-Velasco ◽  
Christian A. Utreras-Silva ◽  
Antonio Díaz-Barrios ◽  
Alicia E. Sommer-Márquez ◽  
Juan P. Tafur ◽  
...  

The development of bio-based materials has been a consequence of the environmental awareness generated over time. The versatility of native starch is a promising starting point for manufacturing environmentally friendly materials. This work aims to compile information on the advancements in research on thermoplastic starch (TPS) nanocomposites after the addition of mainly these four nanofillers: natural montmorillonite (MMT), organically modified montmorillonite (O-MMT), cellulose nanocrystals (CNC), and cellulose nanofibers (CNF). The analyzed properties of nanocomposites were mechanical, barrier, optical, and degradability. The most important results were that as the nanofiller increases, the TPS modulus and strength increase; however, the elongation decreases. Furthermore, the barrier properties indicate that that the incorporation of nanofillers confers superior hydrophobicity. However, the optical properties (transparency and luminosity) are mostly reduced, and the color variation is more evident with the addition of these fillers. The biodegradability rate increases with these nanocompounds, as demonstrated by the study of the method of burial in the soil. The results of this compilation show that the compatibility, proper dispersion, and distribution of nanofiller through the TPS matrix are critical factors in overcoming the limitations of starch when extending the applications of these biomaterials. TPS nanocomposites are materials with great potential for improvement. Exploring new sources of starch and natural nano-reinforcement could lead to a genuinely eco-friendly material that can replace traditional polymers in applications such as packaging.


Sign in / Sign up

Export Citation Format

Share Document