scholarly journals Parametric Optimization of an Air–Liquid Interface System for Flow-Through Inhalation Exposure to Nanoparticles: Assessing Dosimetry and Intracellular Uptake of CeO2 Nanoparticles

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2369 ◽  
Author(s):  
Lars Leibrock ◽  
Harald Jungnickel ◽  
Jutta Tentschert ◽  
Aaron Katz ◽  
Blaza Toman ◽  
...  

Air–liquid interface (ALI) systems have been widely used in recent years to investigate the inhalation toxicity of many gaseous compounds, chemicals, and nanomaterials and represent an emerging and promising in vitro method to supplement in vivo studies. ALI exposure reflects the physiological conditions of the deep lung more closely to subacute in vivo inhalation scenarios compared to submerged exposure. The comparability of the toxicological results obtained from in vivo and in vitro inhalation data is still challenging. The robustness of ALI exposure scenarios is not yet well understood, but critical for the potential standardization of these methods. We report a cause-and-effect (C&E) analysis of a flow through ALI exposure system. The influence of five different instrumental and physiological parameters affecting cell viability and exposure parameters of a human lung cell line in vitro (exposure duration, relative humidity, temperature, CO2 concentration and flow rate) was investigated. After exposing lung epithelia cells to a CeO2 nanoparticle (NP) aerosol, intracellular CeO2 concentrations reached values similar to those found in a recent subacute rat inhalation study in vivo. This is the first study showing that the NP concentration reached in vitro using a flow through ALI system were the same as those in an in vivo study.

2017 ◽  
Vol 6 (4) ◽  
pp. 448-459 ◽  
Author(s):  
Jose Zavala ◽  
Rebecca Greenan ◽  
Q. Todd Krantz ◽  
David M. DeMarini ◽  
Mark Higuchi ◽  
...  

Modifications to a VITROCELL exposure system were required to mitigate cytotoxicity caused by the absence of temperature and humidity control.


2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Haiyan Wang ◽  
Zhenzhen Zhang ◽  
Xing Xie ◽  
Beibei Liu ◽  
Yanna Wei ◽  
...  

ABSTRACT Mycoplasma hyopneumoniae is an important respiratory pathogen of pigs that causes persistent and secondary infections. However, the mechanisms by which this occurs are unclear. In this study, we established air-liquid interface culture systems for pig bronchial epithelial cells (ALI-PBECs) that were comparable to the conditions in the native bronchus in vivo. We used this ALI-PBECs model to study the infection and migration characteristics of M. hyopneumoniae in vitro. Based on the results, we confirmed that M. hyopneumoniae was able to adhere to ALI-PBECs and disrupt mucociliary function. Importantly, M. hyopneumoniae could migrate to the basolateral chamber through the paracellular route but not the transcellular pathway, and this was achieved by reversibly disrupting tight junctions (TJs) and increasing the permeability and damaging the integrity of the epithelial barrier. We examined the migration ability of M. hyopneumoniae using an ALI-PBECs model for the first time. The disruption of the epithelial barrier allowed M. hyopneumoniae to migrate to the basolateral chamber through the paracellular route, which may be related to immune evasion, extrapulmonary dissemination, and persistent infection of M. hyopneumoniae.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amara L. Holder ◽  
Linsey C. Marr

Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2(volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2silver or 2.1 μg cm−2nickel oxide aerosol at the air-liquid interface. Unlike a number ofin vitrostudies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3226
Author(s):  
Sivakumar Murugadoss ◽  
Sonja Mülhopt ◽  
Silvia Diabaté ◽  
Manosij Ghosh ◽  
Hanns-Rudolf Paur ◽  
...  

Extensive production and use of nanomaterials (NMs), such as titanium dioxide (TiO2), raises concern regarding their potential adverse effects to humans. While considerable efforts have been made to assess the safety of TiO2 NMs using in vitro and in vivo studies, results obtained to date are unreliable, possibly due to the dynamic agglomeration behavior of TiO2 NMs. Moreover, agglomerates are of prime importance in occupational exposure scenarios, but their toxicological relevance remains poorly understood. Therefore, the aim of this study was to investigate the potential pulmonary effects induced by TiO2 agglomerates of different sizes at the air–liquid interface (ALI), which is more realistic in terms of inhalation exposure, and compare it to results previously obtained under submerged conditions. A nano-TiO2 (17 nm) and a non-nano TiO2 (117 nm) was selected for this study. Stable stock dispersions of small agglomerates and their respective larger counterparts of each TiO2 particles were prepared, and human bronchial epithelial (HBE) cells were exposed to different doses of aerosolized TiO2 agglomerates at the ALI. At the end of 4h exposure, cytotoxicity, glutathione depletion, and DNA damage were evaluated. Our results indicate that dose deposition and the toxic potential in HBE cells are influenced by agglomeration and exposure via the ALI induces different cellular responses than in submerged systems. We conclude that the agglomeration state is crucial in the assessment of pulmonary effects of NMs.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Michaela Aufderheide ◽  
Beat Halter ◽  
Niklas Möhle ◽  
Dieter Hochrainer

The EU Regulation on Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) demands the implementation of alternative methods for analyzing the hazardous effects of chemicals including particulate formulations. In the field of inhalation toxicology, a variety ofin vitromodels have been developed for such studies. To simulate thein vivosituation, an adequate exposure device is necessary for the direct exposure of cultivated lung cells at the air-liquid interface (ALI). The CULTEX RFS fulfills these requirements and has been optimized for the exposure of cells to atomized suspensions, gases, and volatile compounds as well as micro- and nanosized particles. This study provides information on the construction and functional aspects of the exposure device. By using the Computational Fluid Dynamics (CFD) analysis, the technical design was optimized to realize a stable, reproducible, and homogeneous deposition of particles. The efficiency of the exposure procedure is demonstrated by exposing A549 cells dose dependently to lactose monohydrate, copper(II) sulfate, copper(II) oxide, and micro- and nanoparticles. All copper compounds induced cytotoxic effects, most pronounced for soluble copper(II) sulfate. Micro- and nanosized copper(II) oxide also showed a dose-dependent decrease in the cell viability, whereby the nanosized particles decreased the metabolic activity of the cells more severely.


Sign in / Sign up

Export Citation Format

Share Document