scholarly journals Development of Epidermal Equivalent from Electrospun Synthetic Polymers for In Vitro Irritation/Corrosion Testing

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2528
Author(s):  
Denisse Esther Mallaupoma Camarena ◽  
Larissa Satiko Alcântara Sekimoto Matsuyama ◽  
Silvya Stuchi Maria-Engler ◽  
Luiz Henrique Catalani

The development of products for topical applications requires analyses of their skin effects before they are destined for the market. At present, the ban on animal use in several tests makes the search for in vitro models (such as artificial skin) necessary to characterize the risks involved. In this work, tissue engineering concepts were used to manufacture collagen-free three-dimensional scaffolds for cell growth and proliferation. Two different human skin models—reconstructed human epidermis and full-thickness skin—were developed from electrospun scaffolds using synthetic polymers such as polyethylene terephthalate, polybutylene terephthalate, and nylon 6/6. After the construction of these models, their histology was analyzed by H&E staining and immunohistochemistry. The results revealed a reconstructed epidermal tissue, duly stratified, obtained from the nylon scaffold. In this model, the presence of proteins involved in the epidermis stratification process (cytokeratin 14, cytokeratin 10, involucrin, and loricrin) was confirmed by immunohistochemistry and Western blot analysis. The nylon reconstructed human epidermis model’s applicability was evaluated as a platform to perform irritation and corrosion tests. Our results demonstrated that this model is a promising platform to assess the potential of dermal irritation/corrosion of chemical products.

2020 ◽  
Vol 27 (29) ◽  
pp. 4778-4788 ◽  
Author(s):  
Victoria Heredia-Soto ◽  
Andrés Redondo ◽  
José Juan Pozo Kreilinger ◽  
Virginia Martínez-Marín ◽  
Alberto Berjón ◽  
...  

Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.


2021 ◽  
Vol 99 (4) ◽  
pp. 531-553 ◽  
Author(s):  
Cindrilla Chumduri ◽  
Margherita Y. Turco

AbstractHealthy functioning of the female reproductive tract (FRT) depends on balanced and dynamic regulation by hormones during the menstrual cycle, pregnancy and childbirth. The mucosal epithelial lining of different regions of the FRT—ovaries, fallopian tubes, uterus, cervix and vagina—facilitates the selective transport of gametes and successful transfer of the zygote to the uterus where it implants and pregnancy takes place. It also prevents pathogen entry. Recent developments in three-dimensional (3D) organoid systems from the FRT now provide crucial experimental models that recapitulate the cellular heterogeneity and physiological, anatomical and functional properties of the organ in vitro. In this review, we summarise the state of the art on organoids generated from different regions of the FRT. We discuss the potential applications of these powerful in vitro models to study normal physiology, fertility, infections, diseases, drug discovery and personalised medicine.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Iwona Ziółkowska-Suchanek

Hypoxia is the most common microenvironment feature of lung cancer tumors, which affects cancer progression, metastasis and metabolism. Oxygen induces both proteomic and genomic changes within tumor cells, which cause many alternations in the tumor microenvironment (TME). This review defines current knowledge in the field of tumor hypoxia in non-small cell lung cancer (NSCLC), including biology, biomarkers, in vitro and in vivo studies and also hypoxia imaging and detection. While classic two-dimensional (2D) in vitro research models reveal some hypoxia dependent manifestations, three-dimensional (3D) cell culture models more accurately replicate the hypoxic TME. In this study, a systematic review of the current NSCLC 3D models that have been able to mimic the hypoxic TME is presented. The multicellular tumor spheroid, organoids, scaffolds, microfluidic devices and 3D bioprinting currently being utilized in NSCLC hypoxia studies are reviewed. Additionally, the utilization of 3D in vitro models for exploring biological and therapeutic parameters in the future is described.


Cancers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 292 ◽  
Author(s):  
Laura Bray ◽  
Constanze Secker ◽  
Berline Murekatete ◽  
Jana Sievers ◽  
Marcus Binner ◽  
...  

Bone is the most common site for breast-cancer invasion and metastasis, and it causes severe morbidity and mortality. A greater understanding of the mechanisms leading to bone-specific metastasis could improve therapeutic strategies and thus improve patient survival. While three-dimensional in vitro culture models provide valuable tools to investigate distinct heterocellular and environmental interactions, sophisticated organ-specific metastasis models are lacking. Previous models used to investigate breast-to-bone metastasis have relied on 2.5D or singular-scaffold methods, constraining the in situ mimicry of in vitro models. Glycosaminoglycan-based gels have demonstrated outstanding potential for tumor-engineering applications. Here, we developed advanced biphasic in vitro microenvironments that mimic breast-tumor tissue (MCF-7 and MDA-MB-231 in a hydrogel) spatially separated with a mineralized bone construct (human primary osteoblasts in a cryogel). These models allow distinct advantages over former models due to the ability to observe and manipulate cellular migration towards a bone construct. The gels allow for the binding of adhesion-mediating peptides and controlled release of signaling molecules. Moreover, mechanical and architectural properties can be tuned to manipulate cell function. These results demonstrate the utility of these biomimetic microenvironment models to investigate heterotypic cell–cell and cell–matrix communications in cancer migration to bone.


2017 ◽  
Vol 42 ◽  
pp. 31-37 ◽  
Author(s):  
Tatiana do Nascimento Pedrosa ◽  
Carolina Motter Catarino ◽  
Paula Comune Pennacchi ◽  
Sílvia Romano de Assis ◽  
Fabrícia Gimenes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document