scholarly journals Time-Domain Investigations of Coherent Phonons in van der Waals Thin Films

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2543
Author(s):  
Fabien Vialla ◽  
Natalia Del Fatti

Coherent phonons can be launched in materials upon localized pulsed optical excitation, and be subsequently followed in time-domain, with a sub-picosecond resolution, using a time-delayed pulsed probe. This technique yields characterization of mechanical, optical, and electronic properties at the nanoscale, and is taken advantage of for investigations in material science, physics, chemistry, and biology. Here we review the use of this experimental method applied to the emerging field of homo- and heterostructures of van der Waals materials. Their unique structure corresponding to non-covalently stacked atomically thin layers allows for the study of original structural configurations, down to one-atom-thin films free of interface defect. The generation and relaxation of coherent optical phonons, as well as propagative and resonant breathing acoustic phonons, are comprehensively discussed. This approach opens new avenues for the in situ characterization of these novel materials, the observation and modulation of exotic phenomena, and advances in the field of acoustics microscopy.

1996 ◽  
Vol 272 (1) ◽  
pp. 38-42 ◽  
Author(s):  
R. Tenne ◽  
E. Galun ◽  
A. Ennaoui ◽  
S. Fiechter ◽  
K. Ellmer ◽  
...  
Keyword(s):  

2011 ◽  
Vol 324 ◽  
pp. 277-281 ◽  
Author(s):  
Pierre Campistron ◽  
Julien Carlier ◽  
Nadine Saad ◽  
Jamin Gao ◽  
Malika Toubal ◽  
...  

The main goal of this work is to develop an ultrasonic high frequency method for characterization of thin layers. The development of high frequency acoustic transducers for longitudinal waves and shear waves on silicon has enabeled the characterization of thin films deposited on this substrate. Three types of transducers have been achieved : (i) single crystal LiNbOSubscript text3 Y+163° for shear waves generation, and (ii) Y+36° for longitudinal waves, bonded and thinned on silicon substrate to achieve ultrasonic transducers in the frequency range 300-600 MHz ; (iii) thin films ZnO transducers were realized due to sputtering technologies working in the frequency range 1 GHz- 2.5 GHz. Using an inversion method and a network analyser which provide the scattering S11 parameter of the transducer versus the frequency we deduce the elastic properties of films deposited on the wafer surface. Thanks to these transducers the acoustic properties of thin films such as SU-8 based nanocomposites (doped with TiO2 , SrTiO3 or W nanoparticles) will be presented. In order to achieve mechanical impedance matching between silicon and water we control the mass of the embedded particles which provide a way to adjust the elastic properties of the characterized material. In another application an Indium metallic layer have been characterized in the high frequency range. We also use this method to characterize dielectric permittivity of the ZnO transducers.


2002 ◽  
Vol 02 (01) ◽  
pp. R13-R28 ◽  
Author(s):  
SAMUEL P. MICKAN ◽  
DEREK ABBOTT ◽  
JESPER MUNCH ◽  
X.-C. ZHANG

Differential terahertz (THz) time-domain spectroscopy (TDS) is a technique for decreasing noise levels in THz thin film characterization experiments. Characterizing thin films in the GHz to THz range is critical for the development of fast integrated circuits and photonic systems, and is potentially applicable to biosensors and proteomics. This paper shows how the differential technique, combined with double modulation, enables the study of thin films with noise reduction over normal TDS that improves at the film gets thinner. Double modulated differential THz-TDS has enabled the characterization of films with less than 1-μm thickness.


Sign in / Sign up

Export Citation Format

Share Document