scholarly journals Photostable and Small YVO4:Yb,Er Upconversion Nanoparticles in Water

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1535
Author(s):  
Masfer Alkahtani ◽  
Anfal Alfahd ◽  
Najla Alsofyani ◽  
Anas A. Almuqhim ◽  
Hussam Qassem ◽  
...  

In this work, we report a simple method of silica coating of upconversion nanoparticles (UCNPs) to obtain well-crystalline particles that remain small and not agglomerated after high-temperature post-annealing, and produce bright visible emission when pumped with near-infrared light. This enables many interesting biological applications, including high-contrast and deep tissue imaging, quantum sensing and super-resolution microscopy. These VO4-based UNCPs are an attractive alternative to fluoride-based crystals for water-based biosensing applications.

2019 ◽  
Vol 4 (32) ◽  
pp. eaax0613 ◽  
Author(s):  
Zhiguang Wu ◽  
Lei Li ◽  
Yiran Yang ◽  
Peng Hu ◽  
Yang Li ◽  
...  

Recently, tremendous progress in synthetic micro/nanomotors in diverse environment has been made for potential biomedical applications. However, existing micro/nanomotor platforms are inefficient for deep tissue imaging and motion control in vivo. Here, we present a photoacoustic computed tomography (PACT)–guided investigation of micromotors in intestines in vivo. The micromotors enveloped in microcapsules are stable in the stomach and exhibit efficient propulsion in various biofluids once released. The migration of micromotor capsules toward the targeted regions in intestines has been visualized by PACT in real time in vivo. Near-infrared light irradiation induces disintegration of the capsules to release the cargo-loaded micromotors. The intensive propulsion of the micromotors effectively prolongs the retention in intestines. The integration of the newly developed microrobotic system and PACT enables deep imaging and precise control of the micromotors in vivo and promises practical biomedical applications, such as drug delivery.


2019 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Danielle Koppel ◽  
Chern Chuang ◽  
Danielle Cadena ◽  
Jianshu Cao ◽  
...  

Technologies which utilize near-infrared (700 – 1000 nm) and short-wave infrared (1000 – 2000 nm) electromagnetic radiation have applications in deep-tissue imaging, telecommunications and satellite telemetry due to low scattering and decreased background signal in this spectral region. However, there are few molecular species, which absorb efficiently beyond 1000 nm. Transition dipole moment coupling (e.g. J-aggregation) allows for redshifted excitonic states and provides a pathway to highly absorptive electronic states in the infrared. We present aggregates of two cyanine dyes whose absorption peaks redshift dramatically upon aggregation in water from ~ 800 nm to 1000 nm and 1050 nm with sheet-like morphologies and high molar absorptivities (e ~ 10<sup>5 </sup>M<sup>-1</sup>cm<sup>-1</sup>). To describe this phenomenology, we extend Kasha’s model for J- and H-aggregation to describe the excitonic states of <i> 2-dimensional aggregates</i> whose slip is controlled by steric hindrance in the assembled structure. A consequence of the increased dimensionality is the phenomenon of an <i>intermediate </i>“I-aggregate”, one which redshifts yet displays spectral signatures of band-edge dark states akin to an H-aggregate. We distinguish between H-, I- and J-aggregates by showing the relative position of the bright (absorptive) state within the density of states using temperature dependent spectroscopy. Our results can be used to better design chromophores with predictable and tunable aggregation with new photophysical properties.


2021 ◽  
Vol 173 ◽  
pp. 141-163
Author(s):  
Fei Ding ◽  
Jing Feng ◽  
Xueli Zhang ◽  
Jielin Sun ◽  
Chunhai Fan ◽  
...  

2013 ◽  
Vol 26 (15) ◽  
pp. 2424-2430 ◽  
Author(s):  
Li Zhou ◽  
Zhaowei Chen ◽  
Kai Dong ◽  
Meili Yin ◽  
Jinsong Ren ◽  
...  

2018 ◽  
Vol 9 (10) ◽  
pp. 5011 ◽  
Author(s):  
Jiafu Wang ◽  
Hua Li ◽  
Geng Tian ◽  
Yong Deng ◽  
Qian Liu ◽  
...  

2018 ◽  
Vol 6 (21) ◽  
pp. 3531-3540 ◽  
Author(s):  
Jun Xiang ◽  
Xia Tong ◽  
Feng Shi ◽  
Qiang Yan ◽  
Bing Yu ◽  
...  

The preparation of a new near-infrared (NIR) light-responsive nanocarrier for controlled drug release is demonstrated.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 103 ◽  
Author(s):  
Andrey Sarychev ◽  
Andrey Ivanov ◽  
Andrey Lagarkov ◽  
Grégory Barbillon

Metal-dielectric micro/nano-composites have surface plasmon resonances in visible and near-infrared domains. Excitation of coupled metal-dielectric resonances is also important. These different resonances can allow enhancement of the electromagnetic field at a subwavelength scale. Hybrid plasmonic structures act as optical antennae by concentrating large electromagnetic energy in micro- and nano-scales. Plasmonic structures are proposed for various applications such as optical filters, investigation of quantum electrodynamics effects, solar energy concentration, magnetic recording, nanolasing, medical imaging and biodetection, surface-enhanced Raman scattering (SERS), and optical super-resolution microscopy. We present the review of recent achievements in experimental and theoretical studies of metal-dielectric micro and nano antennae that are important for fundamental and applied research. The main impact is application of metal-dielectric optical antennae for the efficient SERS sensing.


Nanoscale ◽  
2017 ◽  
Vol 9 (31) ◽  
pp. 11214-11221 ◽  
Author(s):  
Dan Wang ◽  
Lin Zhu ◽  
Yuan Pu ◽  
Jie-Xin Wang ◽  
Jian-Feng Chen ◽  
...  

A novel platform based on transferrin coated magnetic upconversion nanoparticles was developed for near-infrared light induced imaging and photodynamic therapy with enhanced efficiency by magnetic force.


Sign in / Sign up

Export Citation Format

Share Document