scholarly journals Bidirectional Electromagnetically Induced Transparency Based on Coupling of Magnetic Dipole Modes in Amorphous Silicon Metasurface

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1550
Author(s):  
Shuang Liu ◽  
Jingxin Dong ◽  
Jiangnan Si ◽  
Weiji Yang ◽  
Xuanyi Yu ◽  
...  

A bidirectional electromagnetically induced transparency (EIT) arising from coupling of magnetic dipole modes is demonstrated numerically and experimentally based on nanoscale a-Si cuboid-bar metasurface. Analyzed by the finite-difference time-domain (FDTD) Solutions, both the bright and dark magnetic dipole mode is excited in the cuboid, while only the dark magnetic dipole mode is excited in the bar. By breaking the symmetry of the cuboid-bar structure, the destructive interference between bright and dark magnetic dipole modes is induced, resulting in the bidirectional EIT phenomenon. The position and amplitude of simulated EIT peak is adjusted by the vertical spacing and horizontal spacing. The EIT metasurface was fabricated by Electron-Beam Lithography and deep silicon etching technique on the a-Si film deposited by Plasma-Enhanced Chemical Vapor Deposition. Measured by a convergent spectrometer, the fabricated sample achieved a bidirectional EIT peak with transmission up to 65% and 63% under forward and backward incidence, respectively. Due to the enhanced magnetic field induced by the magnetic dipole resonance, the fabricated bidirectional EIT metasurface provides a potential way for magnetic sensing and magnetic nonlinearity.

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1064 ◽  
Author(s):  
Guanghou Sun ◽  
Sheng Peng ◽  
Xuejin Zhang ◽  
Yongyuan Zhu

Active photonics based on graphene has attracted wide attention for developing tunable and compact optical devices with excellent performances. In this paper, the dynamic manipulation of electromagnetically induced transparency (EIT) with high quality factors (Q-factors) is realized in the optical telecommunication range via the graphene-loaded all-dielectric metasurface. The all-dielectric metasurface is composed of split Si nanocuboids, and high Q-factor EIT resonance stems from the destructive interference between the toroidal dipole resonance and the magnetic dipole resonance. As graphene is integrated on the all-dielectric metasurface, the modulation of the EIT window is realized by tuning the Fermi level of graphene, engendering an appreciable modulation depth of 88%. Moreover, the group velocity can be tuned from c/1120 to c/3390. Our proposed metasurface has the potential for optical filters, modulators, and switches.


Science ◽  
2010 ◽  
Vol 330 (6010) ◽  
pp. 1520-1523 ◽  
Author(s):  
Stefan Weis ◽  
Rémi Rivière ◽  
Samuel Deléglise ◽  
Emanuel Gavartin ◽  
Olivier Arcizet ◽  
...  

Electromagnetically induced transparency is a quantum interference effect observed in atoms and molecules, in which the optical response of an atomic medium is controlled by an electromagnetic field. We demonstrated a form of induced transparency enabled by radiation-pressure coupling of an optical and a mechanical mode. A control optical beam tuned to a sideband transition of a micro-optomechanical system leads to destructive interference for the excitation of an intracavity probe field, inducing a tunable transparency window for the probe beam. Optomechanically induced transparency may be used for slowing and on-chip storage of light pulses via microfabricated optomechanical arrays.


2012 ◽  
Vol 27 (02) ◽  
pp. 1350009 ◽  
Author(s):  
YINGHUI GUO ◽  
LIANSHAN YAN ◽  
WEI PAN ◽  
BIN LUO ◽  
KUNHUA WEN ◽  
...  

The transmission characteristics and electromagnetic responses of orthogonal-coupled slot cavities system are investigated with finite difference time domain (FDTD) method. Results show the electromagnetically induced transparency (EIT)-like transmission can be realized in the proposed structure due to the destructive interference between the horizontal cavity (bright mode) and the vertical cavity (dark mode). Moreover, trapped resonance modes in the horizontal cavity can be selective whether to be induced in vertical cavity or not depending on their relative position. Consequently, EIT-like transmission can be obtained in visible and near-infrared range, simultaneously or individually. The corresponding physical mechanisms are discussed in terms of counter profiles of fields | Hz | and coupled mode theory. Influences of the geometrical parameters on EIT-like transmission are also investigated to generate transparency windows with different shape.


2012 ◽  
Vol 1 (3) ◽  
pp. 61
Author(s):  
W. Wang ◽  
L. Zhang ◽  
K. Fang ◽  
Y. W. Zhang

This paper demonstrates the realization of the electromagnetically induced transparency (EIT)-like transmission in a metamaterial plasma waveguide with double side defects based on transmission lines. The waveguide with a single side defect works as a plasma resonator and the resonance wavelength is determined by the Fabry-Perot resonance of surface plasma. While in a waveguide with double side defects, a transmission peak appears between the two resonators frequencies because of the destructive interference between the resonance modes of the two resonators, which indicates a pronounced EIT phenomenon. The experiment results agree well with simulations in microwave frequencies.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1350
Author(s):  
Qiao Wang ◽  
Kaili Kuang ◽  
Huixuan Gao ◽  
Shuwen Chu ◽  
Li Yu ◽  
...  

Electromagnetically induced transparency-like (EIT-like) effect is a promising research area for applications of slow light, sensing and metamaterials. The EIT-like effect is generally formed by the destructive interference of bright-dark mode coupling and bright-bright mode coupling. There are seldom reports about EIT-like effect realized by the coupling of two dark modes. In this paper, we numerically and theoretically demonstrated that the EIT-like effect is achieved through dark-dark mode coupling of two waveguide resonances in a compound nanosystem with metal grating and multilayer structure. If we introduce |1〉, | 2 〉 and | 3 〉 to represent the surface plasmon polaritons (SPPs) resonance, waveguide resonance in layer 2, and waveguide resonance in layer 4, the destructive interference occurs between two pathways of | 0 〉 → | 1 〉 → | 2 〉 and | 0 〉 → | 1 〉 → | 2 〉 → | 3 〉 → | 2 〉 , where | 0 〉 is the ground state without excitation. Our work will stimulate more studies on EIT-like effect with dark-dark mode coupling in other systems.


2018 ◽  
Vol 32 (04) ◽  
pp. 1850030 ◽  
Author(s):  
Feng Xue ◽  
Shao-Bin Liu ◽  
Hai-Feng Zhang ◽  
Yong-Diao Wen ◽  
Xiang-Kun Kong ◽  
...  

In this paper, a tunable electromagnetically induced transparency (EIT) based on S-PINs is theoretically analyzed. Unit cell of the structure consists of a cutwire (CW), split ring resonator (SRR), and solid state plasma (SS plasma) patches which are composed of S-PIN array. The destructive interference between the CW and SRR results in a narrowband transparency window accompanied with strong phase dispersion. The proposed design can obtain a tunable EIT with different frequencies range from 12.8 GHz to 16.5 GHz in a simple method by switching these S-PINs on or off selectively. The related parameters of the S-PIN such as the size, carrier concentration, and volt-ampere characteristics have been studied theoretically. The interaction and coupling between two resonators are investigated in detail by the analysis of the current distribution and E-field strength as well. The research results provide an effective way to realize reconfigurable compact slow-light devices.


2020 ◽  
Vol 9 (5) ◽  
pp. 243-246
Author(s):  
Pei-Chen Kuan ◽  
Chang Huang ◽  
Shau-Yu Lan

AbstractWe implement slow-light under electromagnetically induced transparency condition to measure the motion of cold atoms in an optical lattice undergoing Bloch oscillation. The motion of atoms is mapped out through the phase shift of light without perturbing the external and internal state of the atoms. Our results can be used to construct a continuous motional sensor of cold atoms.


Sign in / Sign up

Export Citation Format

Share Document