scholarly journals Numerical Simulation of Hybrid Nanofluid Mixed Convection in a Lid-Driven Square Cavity with Magnetic Field Using High-Order Compact Scheme

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2250
Author(s):  
M. M. Rashidi ◽  
M. Sadri ◽  
M. A. Sheremet

In this study, the energy transference of a hybrid Al2O3-Cu-H2O nanosuspension within a lid-driven heated square chamber is simulated. The domain is affected by a horizontal magnetic field. The vertical sidewalls are insulated and the horizontal borders of the chamber are held at different fixed temperatures. A fourth-order accuracy compact method is applied to work out the vorticity-stream function view of incompressible Oberbeck–Boussinesq equations. The method used is validated against previous numerical and experimental works and good agreement is shown. The flow patterns, Nusselt numbers, and velocity profiles are studied for different Richardson numbers, Hartmann numbers, and the solid volume fraction of hybrid nanoparticles. Flow field and heat convection are highly affected by the magnetic field and volume fraction of each type of nanoparticles in a hybrid nanofluid. The results show an improvement of heat transfer using nanoparticles. To achieve a higher heat transmission rate by using the hybrid nanofluid, flow parameters like Richardson number and Hartmann number should be considered.

2019 ◽  
Vol 16 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Ishrat Zahan ◽  
R Nasrin ◽  
M A Alim

A numerical analysis has been conducted to show the effects of magnetohydrodynamic (MHD) and Joule heating on heat transfer phenomenon in a lid driven triangular cavity. The heat transfer fluid (HTF) has been considered as water based hybrid nanofluid composed of equal quantities of Cu and TiO2 nanoparticles. The bottom wall of the cavity is undulated in sinusoidal pattern and cooled isothermally. The left vertical wall of the cavity is heated while the inclined side is insulated. The two dimensional governing partial differential equations of heat transfer and fluid flow with appropriate boundary conditions have been solved by using Galerkin's finite element method built in COMSOL Multyphysics. The effects of Hartmann number, Joule heating, number of undulation and Richardson number on the flow structure and heat transfer characteristics have been studied in details. The values of Prandtl number and solid volume fraction of hybrid nanoparticles have been considered as fixed. Also, the code validation has been shown. The numerical results have been presented in terms of streamlines, isotherms and average Nusselt number of the hybrid nanofluid for different values of governing parameters. The comparison of heat transfer rate by using hybrid nanofluid, Cu-water nanofluid,  TiO2 -water nanofluid and clear water has been also shown. Increasing wave number from 0 to 3 enhances the heat transfer rate by 16.89%. The enhanced rate of mean Nusselt number for hybrid nanofluid is found as 4.11% compared to base fluid.


Author(s):  
Gombi Rachappa Manohar ◽  
Puttaswamy Venkatesh ◽  
Bijjanal Jayanna Gireesha ◽  
Gosikere Kenchappa Ramesh

In the current investigation a mathematical model is simplified to explore the numerical treatment for the thermal and flow behavior in a magneto hydrodynamics Casson fluid through a micro channel by taking [Formula: see text] nanoparticles. The combined effects of temperature jump, porous medium and velocity slip are incorporated. Using the dimensionless variables one can obtain the governing differential equations thereafter resolved numerically using RKF45 method. The velocity, temperature, skin friction and Nusselt number coefficient are addressed for different pertaining parameter. The upshots of the current investigation are visualized through graphically elucidation. Out comes shows that larger values of solid volume fraction decreases both velocity and temperature field. Furthermore drag coefficient is increases for increase in magnetic parameter, also hybrid nanofluid gives more impact than nanofluid.


2021 ◽  
Vol 11 (4) ◽  
pp. 1722
Author(s):  
Nidal Abu-Libdeh ◽  
Fares Redouane ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Ahmad Almuhtady ◽  
...  

In this study, a new cavity form filled under a constant magnetic field by Ag/MgO/H2O nanofluids and porous media consistent with natural convection and total entropy is examined. The nanofluid flow is considered to be laminar and incompressible, while the advection inertia effect in the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is explained in the dimensionless form of the governing equations and solved by the finite element method. The results of the values of Darcy (Da), Hartmann (Ha) and Rayleigh (Ra) numbers, porosity (εp), and the properties of solid volume fraction (ϕ) and flow fields were studied. The findings show that with each improvement in the Ha number, the heat transfer rate becomes more limited, and thus the magnetic field can be used as an outstanding heat transfer controller.


Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


2014 ◽  
Vol 14 (03) ◽  
pp. 1450039 ◽  
Author(s):  
O. ANWAR BÉG ◽  
M. FERDOWS ◽  
S. SHAMIMA ◽  
M. NAZRUL ISLAM

Laminar magnetohydrodynamic Marangoni-forced convection boundary layer flow of a water-based biopolymer nanofluid containing nanoparticles from a non-isothermal plate is studied. Magnetic induction effects are incorporated. A variety of nanoparticles are studied, specifically, silver, copper, aluminium oxide and titanium oxide. The Tiwari–Das model is utilized for simulating nanofluid effects. The normalized ordinary differential boundary layer equations (mass, magnetic field continuity, momentum, induced magnetic field and energy conservation) are solved subject to appropriate boundary conditions using Maple shooting quadrature. The influence of Prandtl number (Pr), magnetohydrodynamic body force parameter (β), reciprocal of magnetic Prandtl number (α) and nanofluid solid volume fraction (φ) on velocity, temperature and magnetic stream function distributions is investigated in the presence of strong Marangoni effects (ξ i.e., Marangoni parameter is set as unity). Magnetic stream function is accentuated with body force parameter. The flow is considerably decelerated as is magnetic stream function gradient, with increasing nanofluid solid volume fraction, whereas temperatures are significantly enhanced. Interesting features in the flow regime are explored. The study finds applications in the fabrication of complex biomedical nanofluids, biopolymers, etc.


2021 ◽  
Vol 17 ◽  
Author(s):  
B. Kanimozhi ◽  
M. Muthtamilselvan ◽  
Qasem M. Al-Mdallal ◽  
Bahaaeldin Abdalla

Background: This article numerically examines the effect of buoyancy and Marangoni convection in a porous enclosure formed by two concentric cylinders filled with Ag-MgO water hybrid nanofluid. The inner wall of the cavity is maintained at a hot temperature and the outer vertical wall is considered to be cold. The adiabatic condition is assumed for other two boundaries. The effect of magnetic field is considered in radial and axial directions. The Brinkman-extended Darcy model has been adopted in the governing equations. Methods: The finite difference scheme is employed to work out the governing Navier-Stokes equations. The numerically simulated outputs are deliberated in terms of isotherms, streamlines, velocityand average Nusselt number profiles for numerous governing parameters. Results: Except for a greater magnitude of axial magnetic field, our results suggest that the rate of thermal transport accelerates as the nanoparticle volume fraction grows.Also, it is observed that there is an escalation in the profile of average Nusselt numberwith an enhancement in Marangoni number. Conclusion: Furthermore, the suppression of heat and fluid flow in the tall annulus is mainly due to the radial magnetic field whereas in shallow annulus, the axial magnetic field profoundly affects the flow field and thermal transfer.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Winifred Nduku Mutuku-Njane ◽  
Oluwole Daniel Makinde

We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ), magnetic field parameter (Ha), buoyancy effect (Gr), Eckert number (Ec), suction/injection parameter (fw), Biot number (Bi), and slip parameter (β), on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate.


2019 ◽  
Vol 390 ◽  
pp. 83-90 ◽  
Author(s):  
Sidra Aman ◽  
Syazwani Mohd Zokri ◽  
Zulkhibri Ismail ◽  
Mohd Zuki Salleh ◽  
Ilyas Khan

In this paper MHD flow of Casson hybrid nanofluids are investigated with Caputo time-fractional derivative. Alumina (Al) and copper (Cu) are used as nanoparticles in this study with heat, mass transfer and MHD flow over a vertical channel in a porous medium. The problem is modeled using Caputo fractional derivatives and thermophysical properties of hybrid nanoparticles. The influence of concerned parameters is investigated physically and graphically on the heat, concentration and flow. The effect of volume fraction on thermal conductivity of hybrid nanofluids is observed.


2011 ◽  
Vol 354-355 ◽  
pp. 45-48 ◽  
Author(s):  
Jia Jia Niu ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang ◽  
Chun Rui Li

In this paper, a boundary layer analysis is presented for the slip flow of three types of incompressible viscous nanofluids past a permeable wedge in the presence of a magnetic field. Due to the appearance of a slip boundary condition at the surface, local similarity solution of the reduced nonlinear ordinary differential equation is obtained by the HAM coupled with minimizing the square residual error. The effects of pertinent parameters, such as the magnetic parameter, the solid volume fraction of nanoparticles, the slip parameter and the type of nanofluid on the flow, are analyzed and studied in details. It is found that Ag-water has the highest skin friction coefficient at the surface compared with the others.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Moussa Khentoul ◽  
Rachid Bessaïh

This article presents a numerical study of two-dimensional laminar mixed convection in a horizontal channel. The upper horizontal wall of the channel is insulated. The governing equations were solved by using the finite volume method based on the simpler algorithm. Comparisons with previous results were performed and found to be in excellent agreement. The results were presented in terms of streamlines, isotherms, local and average Nusselt numbers for the Richardson number (0 ≤ Ri ≤ 10), Reynolds number (5 ≤ Re ≤ 100), solid volume fraction of nanoparticles (0 ≤ ϕ ≤ 0.10), and the type of nanofluids (Cu, Ag, Al2O3, and TiO2). The results show that the previous parameters have considerable effects on the flow and thermal fields. It was found that the heat transfer increases with increasing of Ra, Re, and ϕ.


Sign in / Sign up

Export Citation Format

Share Document