scholarly journals Fabrication of ZnO@Ag3PO4 Core-Shell Nanocomposite Arrays as Photoanodes and Their Photoelectric Properties

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1254 ◽  
Author(s):  
Yi ◽  
Li ◽  
Wu ◽  
Chen ◽  
Yang ◽  
...  

In this study, we combine the methods of magnetron sputtering, hydrothermal growth, and stepwise deposition to prepare novel ZnO@Ag3PO4 core-shell nanocomposite arrays structure. Through scanning electron microscope (SEM) topography test, energy dispersive spectrometer (EDS) element test and X-ray diffractometry (XRD) component test, we characterize the morphology, element distribution and structural characteristics of ZnO@Ag3PO4 core-shell nanocomposite arrays structure. At the same time, we test the samples for light reflectance, hydrophilicity and photoelectric performance. We find that after deposition of Ag3PO4 on ZnO nanorods, light reflectance decreases. As the time of depositions increases, light reflectance gradually decreases. After the deposition of Ag3PO4, the surface of the sample shows super hydrophilicity, which is beneficial for the photoelectric performance test. Through the optical transient response test, we find that the photo-generated current reaches a maximum when a small amount of Ag3PO4 is deposited. As the time of depositions of Ag3PO4 increases, the photogenerated current gradually decreases. Finally, we conducted an alternating current (AC) impedance test and also verified the correctness of the photocurrent test. Therefore, the structure is expected to be prepared into a photoanode for use in fields such as solar cells.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2364
Author(s):  
Zhiyuan He ◽  
Chi Zhang ◽  
Rangwei Meng ◽  
Xuanhui Luo ◽  
Mengwei Chen ◽  
...  

In this paper, Ag@SiO2 core-shell nanoparticles (NPs) with different shell thicknesses were prepared experimentally and introduced into the photosensitive layer of mesoscopic hole-conductor-free perovskite solar cells (PSCs) based on carbon counter electrodes. By combining simulation and experiments, the influences of different shell thickness Ag@SiO2 core-shell nanoparticles on the photoelectric properties of the PSCs were studied. The results show that, when the shell thickness of 0.1 wt% Ag@SiO2 core-shell nanoparticles is 5 nm, power conversion efficiency is improved from 13.13% to 15.25%, achieving a 16% enhancement. Through the measurement of the relevant parameters of the obtained perovskite film, we found that this gain not only comes from the increase in current density that scholars generally think, but also comes from the improvement of the film quality. Like current gain, this gain is related to the different shell thickness of Ag@SiO2 core-shell nanoparticles. Our research provides a new direction for studying the influence mechanism of Ag@SiO2 core-shell nanoparticles in perovskite solar cells.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6124
Author(s):  
Junhyuk Yoo ◽  
Uijin Jung ◽  
Bomseumin Jung ◽  
Wenhu Shen ◽  
Jinsub Park

Although ZnO nanostructure-based photodetectors feature a well-established system, they still present difficulties when being used in practical situations due to their slow response time. In this study, we report on how forming an amorphous SnO2 (a-SnO2) shell layer on ZnO nanorods (NRs) enhances the photoresponse speed of a ZnO-based UV photodetector (UV PD). Our suggested UV PD, consisting of a ZnO/a-SnO2 NRs core–shell structure, shows a rise time that is 26 times faster than a UV PD with bare ZnO NRs under 365 nm UV irradiation. In addition, the light responsivity of the ZnO/SnO2 NRs PD simultaneously increases by 3.1 times, which can be attributed to the passivation effects of the coated a-SnO2 shell layer. With a wide bandgap (~4.5 eV), the a-SnO2 shell layer can successfully suppress the oxygen-mediated process on the ZnO NRs surface, improving the photoresponse properties. Therefore, with a fast photoresponse speed and a low fabrication temperature, our as-synthesized, a-SnO2-coated ZnO core–shell structure qualifies as a candidate for ZnO-based PDs.


2021 ◽  
Vol 16 (7) ◽  
pp. 1134-1142
Author(s):  
Wenduo Yang ◽  
Jun Xiang ◽  
Sroeurb Loy ◽  
Nan Bu ◽  
Duo Cui ◽  
...  

NiCo2O4 as an electrode material for supercapacitors (SCs) has been studied by a host of researchers due to its unique structural characteristics and high capacitance. However, its performance has not yet reached the level of practical applications.it is an effective strategy to synthesize composite electrode materials for tackling the problem. Herein, NiCo2O4@ZnCo2O4 as a novel core–shell composite electrode material has been fabricated through a two-step simple hydrothermal method. The as-prepared sample can be directly used as cathode material of a supercapacitor, and its specific capacitance is 463.1 C/g at 1 A/g. An assembled capacitor has an energy density of 77 Wh·kg−1 at 2700 W·kg−1, and after 8000 cycles, 88% of the initial capacity remains.


2017 ◽  
Vol 46 (6) ◽  
pp. 604002
Author(s):  
刘琼, LIU Qiong ◽  
马守宝 MA Shou-bao ◽  
钱晓晨 QIAN Xiao-chen ◽  
阮俊 RUAN Jun ◽  
卢忠荣 LU Zhong-rong ◽  
...  

2020 ◽  
Vol 20 (8) ◽  
pp. 5223-5238
Author(s):  
Vanita Sharma ◽  
P. Jeevanandam

Considerable work is being carried out recently to develop nanomaterials which can act as photocatalyst under sunlight. In the present study, ZnO@CuS core–shell nanocomposites were synthesized and their photocatalytic activity has been investigated. The nanocomposites were prepared by thermal decomposition of a single molecular precursor, cyclo-tri-μ-thioacetamide-tris(chlorocopper(I)) complex ([Cu3TAA3Cl3]), in the presence of ZnO nanorods in diphenyl ether at 200 °C. The effect of reaction time and precursor concentration on copper sulfide shell formation have been investigated. The ZnO@CuS core–shell nanocomposites were characterized using different techniques such as XRD, FE-SEM, TEM, FT-IR, UV-Vis, DRS and XPS. As compared to bare ZnO nanorods, the ZnO@CuS nanocomposites show better photocatalytic activity towards degradation of congo red in an aqueous solution under sunlight.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 189 ◽  
Author(s):  
Hui Wu ◽  
Huge Jile ◽  
Zeqiang Chen ◽  
Danyang Xu ◽  
Zao Yi ◽  
...  

In this paper, ZnO@MoS2 core-shell heterojunction arrays were successfully prepared by the two-step hydrothermal method, and the growth mechanism was systematically studied. We found that the growth process of molybdenum disulfide (MoS2) was sensitively dependent on the reaction temperature and time. Through an X-ray diffractometry (XRD) component test, we determined that we prepared a 2H phase MoS2 with a direct bandgap semiconductor of 1.2 eV. Then, the photoelectric properties of the samples were studied on the electrochemical workstation. The results show that the ZnO@MoS2 heterojunction acts as a photoanode, and the photocurrent reaches 2.566 mA under the conditions of 1000 W/m2 sunshine and 0.6 V bias. The i-t curve also illustrates the perfect cycle stability. Under the condition of illumination and external bias, the electrons flow to the conduction band of MoS2 and flow out through the external electrode of MoS2. The holes migrate from the MoS2 to the zinc oxide (ZnO) valence band. It is transferred to the external circuit through the glass with fluorine-doped tin oxide (FTO) together with the holes on the ZnO valence band. The ZnO@MoS2 nanocomposite heterostructure provides a reference for the development of ultra-high-speed photoelectric switching devices, photodetector(PD) devices, and photoelectrocatalytic technologies.


2019 ◽  
Vol 33 (06) ◽  
pp. 1950068
Author(s):  
Y. Liu ◽  
L. P. Liu ◽  
Y. Xing ◽  
X. X. Liang

Within the framework of the dielectric continuum approach and modified random-element-isodisplacement model, the optical vibration mode in a spherical core-shell quantum dot (CSQD) consisting of ternary mixed crystals (TMCs) are investigated. The dispersion relation and electron–phonon interaction Hamiltonian are derived. As a typical case, the numerical results for [Formula: see text] and [Formula: see text] CSQDs are obtained and discussed. Taking the one- and two-mode behaviors of TMCs into account, the effects of TMCs on interface/surface optical (IO/SO) phonon show that there are 3 and 5 branches of IO/SO phonon modes in [Formula: see text] and [Formula: see text] CSQDs for a given component of TMC, respectively. It is also found that the IO/SO phonon frequencies and electron–phonon interactions are strongly dependent on the component of TMCs and the size of CSQDs. We hope this work would be useful for the study of the phonon-related photoelectric properties in CSQDs consisting of TMCs.


2013 ◽  
Vol 52 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Hussein Awada ◽  
Hussein Medlej ◽  
Sylvie Blanc ◽  
Marie-Hélène Delville ◽  
Roger C. Hiorns ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document