scholarly journals Fluorescence Characteristics of Aqueous Synthesized Tin Oxide Quantum Dots for the Detection of Heavy Metal Ions in Contaminated Water

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1294 ◽  
Author(s):  
Jianqiao Liu ◽  
Qianru Zhang ◽  
Weiting Xue ◽  
Haipeng Zhang ◽  
Yu Bai ◽  
...  

Tin oxide quantum dots were synthesized in aqueous solution via a simple hydrolysis and oxidation process. The morphology observation showed that the quantum dots had an average grain size of 2.23 nm. The rutile phase SnO2 was confirmed by the structural and compositional characterization. The fluorescence spectroscopy of quantum dots was used to detect the heavy metal ions of Cd2+, Fe3+, Ni2+ and Pb2+, which caused the quenching effect of photoluminescence. The quantum dots showed the response of 2.48 to 100 ppm Ni2+. The prepared SnO2 quantum dots exhibited prospective in the detection of heavy metal ions in contaminated water, including deionized water, deionized water with Fe3+, reclaimed water and sea water. The limit of detection was as low as 0.01 ppm for Ni2+ detection. The first principle calculation based on the density function theory demonstrated the dependence of fluorescence response on the adsorption energy of heavy metal ions as well as ion radius. The mechanism of fluorescence response was discussed based on the interaction between Sn vacancies and Ni2+ ions. A linear correlation of fluorescence emission intensity against Ni2+ concentration was obtained in the logarithmic coordinates. The density of active Sn vacancies was the crucial factor that determined fluorescence response of SnO2 QDs to heavy metal ions.

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2591 ◽  
Author(s):  
Nur Ain Asyiqin Anas ◽  
Yap Wing Fen ◽  
Nor Azah Yusof ◽  
Nur Alia Sheh Omar ◽  
Nur Syahira Md Ramdzan ◽  
...  

The modification of graphene quantum dots (GQDs) may drastically enhance their properties, therefore resulting in various related applications. This paper reported the preparation of novel cetyltrimethylammonium bromide/hydroxylated graphene quantum dots (CTAB/HGQDs) thin film using the spin coating technique. The properties of the thin film were then investigated and studied. The functional groups existing in CTAB/HGQDs thin film were confirmed by the Fourier transform infrared (FTIR) spectroscopy, while the atomic force microscope (AFM) displayed a homogenous surface of the thin film with an increase in surface roughness upon modification. Optical characterizations using UV-Vis absorption spectroscopy revealed a high absorption with an optical band gap of 4.162 eV. Additionally, the photoluminescence (PL) spectra illustrated the maximum emission peak of CTAB/HGQDs thin film at a wavelength of 444 nm. The sensing properties of the as-prepared CTAB/HGQDs thin film were studied using a surface plasmon resonance technique towards the detection of several heavy metal ions (HMIs) (Zn2+, Ni2+, and Fe3+). This technique generated significant results and showed that CTAB/HGQDs thin film has great potential for HMIs detection.


2020 ◽  
Vol 6 (11) ◽  
pp. 3080-3090
Author(s):  
Chengbo Zhan ◽  
Priyanka R. Sharma ◽  
Hongrui He ◽  
Sunil K. Sharma ◽  
Alexis McCauley-Pearl ◽  
...  

Nanocellulose scaffolds derived from rice husks could efficiently remove heavy metal ions from contaminated water.


to achieve - study the sorption of silver, copper, nickel ions, the method of changing the volume of solutions of a constant concentration of metal ions is used. The amount of zeolite and constant concentrated solution is taken in such an amount that the molar (molecular) parts of the exchanged ions are in a wider range. Some concentrated solutions are taken in flasks in an amount of 20 40 60 80 120 ml and 0.5 g of zeolite are added to them, mixed and a sample is taken periodically for analysis. After 2-2.5 hours, equilibrium occurs. By measuring the density of equilibrium, the amount of sorption of ions is determined.


Sign in / Sign up

Export Citation Format

Share Document