scholarly journals Supercritical Antisolvent Processing of Nitrocellulose: Downscaling to Nanosize, Reducing Friction Sensitivity and Introducing Burning Rate Catalyst

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1386 ◽  
Author(s):  
Oleg Dobrynin ◽  
Mikhail Zharkov ◽  
Ilya Kuchurov ◽  
Igor Fomenkov ◽  
Sergey Zlotin ◽  
...  

A supercritical antisolvent process has been applied to obtain the nitrocellulose nanoparticles with an average size of 190 nm from the nitrocellulose fibers of 20 μm in diameter. Compared to the micron-sized powder, nano-nitrocellulose is characterized with a slightly lower decomposition onset, however, the friction sensitivity has been improved substantially along with the burning rate increasing from 3.8 to 4.7 mm·s−1 at 2 MPa. Also, the proposed approach allows the production of stable nitrocellulose composites. Thus, the addition of 1 wt.% carbon nanotubes further improves the sensitivity of the nano-nitrocellulose up to the friction-insensitive level. Moreover, the simultaneous introduction of carbon nanotubes and nanosized iron oxide catalyzes the combustion process evidenced by a high-speed filming and resulting in the 20% burning rate increasing at 12 MPa. The presented approach to the processing of energetic nanomaterials based on the supercritical fluid technology opens the way to the production of nitrocellulose-based nanopowders with improved performance.

Author(s):  
Yu. V. Bogatov ◽  
V. A. Shcherbakov ◽  
I. D. Kovalev

The paper studies the effect of mechanical activation (MA) modes when stirring a stoichiometric mixture of titanium and soot powders in a ball mill on the properties of mixtures, combustion parameters, relative density, and the microstructure of consolidated titanium carbide samples obtained by SHS. MA conditions for Ti + C reaction mixtures in a ball mill were determined. An increase in the mass of grinding bodies activates the MA mechanism. It was shown that the greatest effect from MA was obtained with a two-stage preparation of mixtures: firstly, the titanium powder was activated separately, then the components were mixed together, and this process included not only their mixing, but also soot powder activation. It was found that combustion behavior is affected by the activation of not only titanium, but also soot. After MA of both components, an anomalous increase in the burning rate (more than 100 cm/s) was found on pressed samples. At the bulk density, there was no effect of MA on the mixture combustion process, since in this case the burning rate of all mixtures was in the range of 1.5–2.5 cm/s. It was revealed that MA of reagents for pressed samples leads to an increase in the combustion temperature, an increase in the relative density of the consolidated refractory product to 93–95 %, and a decrease in the average size of TiC grains. A decrease in the residual porosity of consolidated TiC is due to an increase in the hot pressing temperature and plasticity of the product synthesized during the reaction mixture combustion after MA. The main reason is an increase in the exothermic interaction rate. It was shown that MA when mixing reagents makes it possible to control combustion parameters, the microstructure of consolidated products and opens up new opportunities for obtaining refractory materials featuring a unique structure and properties by SHS pressing.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1229
Author(s):  
Hongtao Zhang ◽  
Zhihua Wang ◽  
Yong He ◽  
Jie Huang ◽  
Kefa Cen

To improve our understanding of the interactive effects in combustion of binary multicomponent fuel droplets at sub-atmospheric pressure, combustion experiments were conducted on two fibre-supported RP-3 kerosene droplets at pressures from 0.2 to 1.0 bar. The burning life of the interactive droplets was recorded by a high-speed camera and a mirrorless camera. The results showed that the flame propagation time from burning droplet to unburned droplet was proportional to the normalised spacing distance between droplets and the ambient pressure. Meanwhile, the maximum normalised spacing distance from which the left droplet can be ignited has been investigated under different ambient pressure. The burning rate was evaluated and found to have the same trend as the single droplet combustion, which decreased with the reduction in the pressure. For every experiment, the interactive coefficient was less than one owing to the oxygen competition, except for the experiment at L/D0 = 2.5 and P = 1.0 bar. During the interactive combustion, puffing and microexplosion were found to have a significant impact on secondary atomization, ignition and extinction.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Burhan Khurshid ◽  
Roohie Naaz Mir

Generalized parallel counters (GPCs) are used in constructing high speed compressor trees. Prior work has focused on utilizing the fast carry chain and mapping the logic onto Look-Up Tables (LUTs). This mapping is not optimal in the sense that the LUT fabric is not fully utilized. This results in low efficiency GPCs. In this work, we present a heuristic that efficiently maps the GPC logic onto the LUT fabric. We have used our heuristic on various GPCs and have achieved an improvement in efficiency ranging from 33% to 100% in most of the cases. Experimental results using Xilinx 5th-, 6th-, and 7th-generation FPGAs and Stratix IV and V devices from Altera show a considerable reduction in resources utilization and dynamic power dissipation, for almost the same critical path delay. We have also implemented GPC-based FIR filters on 7th-generation Xilinx FPGAs using our proposed heuristic and compared their performance against conventional implementations. Implementations based on our heuristic show improved performance. Comparisons are also made against filters based on integrated DSP blocks and inherent IP cores from Xilinx. The results show that the proposed heuristic provides performance that is comparable to the structures based on these specialized resources.


Carbon ◽  
2007 ◽  
Vol 45 (11) ◽  
pp. 2311-2313 ◽  
Author(s):  
Qing-Ping Feng ◽  
Xu-Ming Xie ◽  
Yi-Tao Liu ◽  
Yan-Fang Gao ◽  
Xiao-Hao Wang ◽  
...  

Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


Author(s):  
O.V. Guskov ◽  
V.S. Zakharov ◽  
Minko

The development and research of high-speed aircrafts and their individual parts is an urgent scientific task. In the scientific literature there is information about the integral characteristics of aircrafts of this type, but there is no detailed consideration of such an important part as the transition channel between the air intake and the combustion chamber. The article considers several flow path configurations. The numerical simulation results of hydrogen combustion in the channels of variable cross section using a detailed kinetic mechanism are presented. Based on the analysis of the data obtained, the models of the transition channel and the combustion chamber showing the best characteristics were selected. The impulse and the fuel combustion efficiency are used as criteria for comparing the flow paths. The difference in the application of two calculation methods is described. The presented results and calculation methods can be used at the stage of computational research of the working processes in advanced power plants.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Hongkun He ◽  
Chao Gao

We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs). The superparamagnetic Fe3O4nanoparticles with average size of4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.


Sign in / Sign up

Export Citation Format

Share Document