scholarly journals Effects of Genistein on Differentiation and Viability of Human Visceral Adipocytes

Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 978 ◽  
Author(s):  
Elena Grossini ◽  
Serena Farruggio ◽  
Giulia Raina ◽  
David Mary ◽  
Giacomo Deiro ◽  
...  

Obesity can lead to pathological growth of adipocytes by inducing inflammation and oxidative stress. Genistein could be a potential candidate for the treatment of obesity due to its antioxidant properties. Specific kits were used to examine the effects of genistein vs adiponectin on human visceral pre-adipocytes differentiation, cell viability, mitochondrial membrane potential, and oxidative stress in pre-adipocytes and in white/brown adipocytes. Western Blot was performed to examine changes in protein activation/expression. Genistein increased human visceral pre-adipocytes differentiation and browning, and caused a dose-related improvement of cell viability and mitochondrial membrane potential. Similar effects were observed in brown adipocytes and in white adipocytes, although in white cells the increase of cell viability was inversely related to the dose. Moreover, genistein potentiated AMP-activated protein kinase (AMPK)/mitofusin2 activation/expression in pre-adipocytes and white/brown adipocytes and protected them from the effects of hydrogen peroxide. The effects caused by genistein were similar to those of adiponectin. The results obtained showed that genistein increases human visceral pre-adipocytes differentiation and browning, protected against oxidative stress in pre-adipocytes and white/brown adipocytes through mechanisms related to AMPK-signalling and the keeping of mitochondrial function.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Dongjie Peng ◽  
Junyan Li ◽  
Yue Deng ◽  
Xiaojuan Zhu ◽  
Lin Zhao ◽  
...  

Abstract Background The activation of NOD-like receptor protein 3 (NLRP3) inflammasome-dependent pyroptosis has been shown to play a vital role in the pathology of manganese (Mn)-induced neurotoxicity. Sodium para-aminosalicylic acid (PAS-Na) has a positive effect on the treatment of manganism. However, the mechanism is still unclear. We hypothesized that PAS-Na might act through NLRP3. Methods The microglial cell line BV2 and male Sprague-Dawley rats were used to investigate the impacts of PAS-Na on Mn-induced NLRP3 inflammasome-dependent pyroptosis. The related protein of the NF-κB pathway and NLRP3-inflammasome-dependent pyroptosis was detected by western blot. The reactive oxygen species and mitochondrial membrane potential were detected by immunofluorescence staining and flow cytometry. The activation of microglia and the gasdermin D (GSDMD) were detected by immunofluorescence staining. Results Our results showed that Mn treatment induced oxidative stress and activated the NF-κB pathway by increasing the phosphorylation of p65 and IkB-α in BV2 cells and in the basal ganglia of rats. PAS-Na could alleviate Mn-induced oxidative stress damage by inhibiting ROS generation, increasing mitochondrial membrane potential and ATP levels, thereby reducing the phosphorylation of p65 and IkB-α. Besides, Mn treatment could activate the NLRP3 pathway and promote the secretion of IL-18 and IL-1β, mediating pyroptosis in BV2 cells and in the basal ganglia and hippocampus of rats. But an inhibitor of NF-κb (JSH-23) treatment could significantly reduce LDH release, the expression of NLRP3 and Cleaved CASP1 protein and IL-1β and IL-18 mRNA level in BV2 cells. Interestingly, the effect of PAS-Na treatment in Mn-treated BV2 cells is similar to those of JSH-23. Besides, immunofluorescence results showed that PAS-Na reduced the increase number of activated microglia, which stained positively for GSDMD. Conclusion PAS-Na antagonized Mn-induced NLRP3 inflammasome dependent pyroptosis through inhibiting NF-κB pathway activation and oxidative stress.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Shicheng Bi ◽  
Xiaodan Ma ◽  
Yuemin Wang ◽  
Xiaoqing Chi ◽  
Yong Zhang ◽  
...  

Previous investigation showed that ginsenoside Rg1 (Rg1) extracted from Panax ginseng C.A. Mey has antioxidative effect on oxidative stress in chickens. The present study was designed to investigate the protective effects of Rg1 on chicken lymphocytes against hydrogen peroxide-induced oxidative stress and the potential mechanisms. Cell viability, apoptotic cells, malondialdehyde, activity of superoxide dismutase, mitochondrial membrane potential, and [Ca2+]i concentration were measured, and transcriptome analysis and quantitative real-time polymerase chain reaction were used to investigate the effect of Rg1 on gene expression of the cells. The results showed that treatment of lymphocytes with H2O2 induced oxidative stress and apoptosis. However, pretreatment of the cells with Rg1 dramatically enhanced cell viability, reduced apoptotic cells, and decreased oxidative stress induced by H2O2. In addition, Rg1 reduced these H2O2-dependent decreases in mitochondrial membrane potential and reversed [Ca2+]i overload. Transcriptome analysis showed that 323 genes were downregulated and 105 genes were upregulated in Rg1-treated cells. The differentially expressed genes were involved in Toll-like receptors, peroxisome proliferator-activated receptor signaling pathway, and cytokine-cytokine receptor interaction. The present study indicated that Rg1 may act as an antioxidative agent to protect cell damage caused by oxidative stress via regulating expression of genes such as RELT, EDA2R, and TLR4.


2020 ◽  
Author(s):  
Neville Ng ◽  
Mauricio Castro Cabral-da-Silva ◽  
Simon Maksour ◽  
Tracey Berg ◽  
Martin Engel ◽  
...  

Abstract BackgroundVanishing white matter disease (VWMD) is a rare leukodystrophy caused by mutations of the guanine exchange factor eIF2B that typically presents with juvenile onset. There are few treatments and no cures for the disease. Recent progress in the field has established mitochondrial dysfunction and endoplasmic reticulum (ER) stress to be strongly implicated in observed glial cell pathology. Drug repurposing offers a rapid approach toward translation of therapeutics with already-licensed drugs. ObjectiveThe aim of this study was to use fibroblasts and induced pluripotent stem cell (iPSC)-derived astrocytes from patients bearing the EIF2B5R113H/A403V or EIF2B2G200V/E213G VWMD mutations to identify potentially repurposable FDA-approved drugs based on in vitro assays. MethodsCell viability in the presence or absence of stress was assessed by resazurin reduction activity assay, mitochondrial membrane potential by TMRE fluorescence, and oxidative stress by H2DCFDA oxidation. Relative eIF2B phosphorylation, GADD34 and CHOP were quantified by fluorescent western blot. ResultsDysregulated GADD34 and CHOP were identified in patient fibroblasts and iPSC-derived astrocytes under induced stress conditions. A drug screen from a 2,400 FDA-approved drug library with EIF2B5R113H/A403V VWMD patient fibroblasts identified 113 anti-inflammatory drugs as a major class of hits with cytoprotective effects. A panel of potential candidate drugs, including berberine, deflazacort, ursodiol, zileuton, guanabenz and Anavex 2-73, and preclinical ISRIB, increased cell survival of EIF2B5R113H/A403V or EIF2B2G200V/E213G VWMD astrocytes, and were further investigated for their effect on the integrated stress response and mitochondrial stress. Ursodiol demonstrated capacity to ameliorate oxidative stress and loss of mitochondrial membrane potential in VWMD patient iPSC-derived astrocytes in the presence or absence of stress conditions. ConclusionPatient-derived cells can be used to identify cellular phenotypes and for large-scale drug screening. Anti-inflammatory compounds, such as berberine, deflazacort, ursodiol and zileuton are potentially repurposable drug candidates for VWMD that should be further investigated for translation in vivo.


2017 ◽  
Vol 95 (5) ◽  
pp. 610-619 ◽  
Author(s):  
Wenhe Zhu ◽  
Huiyan Wang ◽  
Wei Zhang ◽  
Na Xu ◽  
Junjie Xu ◽  
...  

Antler velvet polypeptide (VAP) is a prominent bioactive component of antler velvet. Whereas uncharacterized crude extracts have typically been used in pharmacological studies, in this study, the velvet polypeptide was isolated and purified by acid water extraction, ethanol precipitation, ammonium sulfate fractionation and precipitation, and chromatography, progressively. Human umbilical vein endothelial cells (HUVECs) were induced with H2O2 followed purified polypeptide treatment. Cell viability was evaluated by MTT assay. The apoptosis of cells was detected by fluorescence microscopy and flow cytometry. A cell analyzer was used to measure the mitochondrial membrane potential. The intracellular reactive oxygen species (ROS) levels were determined by flow cytometry. Oxidative stress related biochemical parameters were detected, and the expression of apoptosis-related proteins was examined by Western blot analysis. The results indicated that a 7.0 kDa polypeptide (VAP II) was isolated from antler velvet. VAP II enhanced cell viability, decreased cell apoptosis, reversed depolarization of mitochondrial membrane potential, decreased ROS levels, inhibited oxidative stress, and regulated the downstream signaling apoptotic cascade expression caused by H2O2. The protective effects of VAP II on HUVECs suggests a potential strategy for the treatment of cardiovascular disease.


2019 ◽  
Vol 18 (4) ◽  
pp. 334-341 ◽  
Author(s):  
Kun Fu ◽  
Liqiang Chen ◽  
Lifeng Miao ◽  
Yan Guo ◽  
Wei Zhang ◽  
...  

Background/Objective: Grape seed proanthocyanidins (GSPs) are a group of polyphenolic bioflavonoids, which possess a variety of biological functions and pharmacological properties. We studied the neuroprotective effects of GSP against oxygen-glucose deprivation/reoxygenation (OGD/R) injury and the potential mechanisms in mouse neuroblastoma N2a cells. Methods: OGD/R was conducted in N2a cells. Cell viability was evaluated by CCK-8 and LDH release assay. Apoptosis was assessed by TUNEL staining and flow cytometry. Protein levels of cleaved caspase-3, Bax and Bcl-2 were detected by Western blotting. CHOP, GRP78 and caspase-12 mRNA levels were assessed by real-time PCR. JC-1 dying was used to detect mitochondrial membrane potential. ROS levels, activities of endogenous antioxidant enzymes and ATP production were examined to evaluate mitochondrial function. Results: GSP increased cell viability after OGD/R injury in a dose-dependent manner. Furthermore, GSP inhibited cell apoptosis, reduced the mRNA levels of CHOP, GRP78 and caspase-12 (ER stressassociated genes), restored mitochondrial membrane potential and ATP generation, improved activities of endogenous anti-oxidant ability (T-AOC, GXH-Px, and SOD), and decreased ROS level. Conclusion: Our findings suggest that GSP can protect N2a cells from OGD/R insult. The mechanism of anti-apoptotic effects of GSP may involve attenuating ER stress and mitochondrial dysfunction.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


Sign in / Sign up

Export Citation Format

Share Document