scholarly journals Natural Products and Acute Myeloid Leukemia: A Review Highlighting Mechanisms of Action

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1010 ◽  
Author(s):  
Dongwon Hwang ◽  
Minsun Kim ◽  
Hyejin Park ◽  
Myung In Jeong ◽  
Woojin Jung ◽  
...  

Recent findings have shown great potential of alternative interventions such as immunotherapy and natural products for acute myeloid leukemia (AML). This study aims to review the anti-AML effect of various natural compounds. Natural compounds were classified into five groups: alkaloids, carotenoids, nitrogen-containing compounds, organosulfur compounds or phenolics based on each compound’s chemical properties. Fifty-eight studies were collected and reviewed in this article. Phenolics are the most abundant group to have an apoptotic effect over AML cells, while other groups have also shown significant apoptotic effects. Some compounds induced apoptosis by regulating unique mechanism like human telomerase reverse transcriptase (hTERT) or laminin receptor (67LR), while others modified caspases, poly (adp-ribose) polymerase (PARP) and p53. Further study is required to identify side-effects of potent compounds and the synergistic effects of combination of two or more natural compounds or existing conventional anti-AML drugs to treat this dreadful disease.

Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Tania Keiko Shishido ◽  
Rafael Vicentini Popin ◽  
Jouni Jokela ◽  
Matti Wahlsten ◽  
Marli Fatima Fiore ◽  
...  

Cyanobacteria are photosynthetic organisms that produce a large diversity of natural products with interesting bioactivities for biotechnological and pharmaceutical applications. Cyanobacterial extracts exhibit toxicity towards other microorganisms and cancer cells and, therefore, represent a source of potentially novel natural products for drug discovery. We tested 62 cyanobacterial strains isolated from various Brazilian biomes for antileukemic and antimicrobial activities. Extracts from 39 strains induced selective apoptosis in acute myeloid leukemia (AML) cancer cell lines. Five of these extracts also exhibited antifungal and antibacterial activities. Chemical and dereplication analyses revealed the production of nine known natural products. Natural products possibly responsible for the observed bioactivities and five unknown, chemically related chlorinated compounds present only in Brazilian cyanobacteria were illustrated in a molecular network. Our results provide new information on the vast biosynthetic potential of cyanobacteria isolated from Brazilian environments.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2756-2756
Author(s):  
Soumit K. Basu ◽  
Sylvia Chien ◽  
Xin Zhao ◽  
Kenneth J. Kopecky ◽  
Frederick R. Appelbaum ◽  
...  

Abstract Abstract 2756 Objectives: Adhesion of acute myeloid leukemia (AML) blasts in the bone marrow (BM) microenvironment confers protection from chemotherapy cytotoxicity. We sought to extend our knowledge of the molecular mechanisms by which the BM stroma support AML by identifying all functionally relevant adhesion receptors that were associated with clinical outcomes, identifying new functional AML-stromal interactions, and examining for aberrant cytokine production by stroma derived from patient AML BM. Methods: We prospectively analyzed by multicolor flow cytometry the expression of 17 different adhesion receptors by AML blasts derived from peripheral blood or BM of 42 adult patients, ages 19–80. Analyses included percent expression, mean fluorescence intensity (MFI), and in 7 patients, the adhesion receptors expressed by the CD34+CD38−CD123+ putative leukemia stem cell (LSC) population. We correlated percent expression and MFI with the likelihood of complete remission (CR) using Wilcoxon two-sample testing with Monte Carlo estimation of the exact p value. Guided by data from the AML blast adhesion receptor analyses, we designed a functional screen to assay primary AML blast adhesion to a normal BM stromal cell line (HS27a). For 10 patients, we assessed the capacity of function blocking monoclonal antibodies directed against a panel of 11 adhesion molecules to inhibit adhesion of purified primary AML blasts to HS27a, allowing functional identification of previously undescribed AML-stromal adhesion determinants not only on AML cells but also on BM stroma. Lastly, we successfully grew primary BM stroma from 5 AML patients, assessed production of 10 cytokines important for normal hematopoiesis, and measured the same cytokines directly in plasma of AML patient BM aspirate specimens. Results: Adhesion receptor analysis demonstrates that the mean expression by all AML patients was >90% for CD11a, β1, PECAM-1, CD44, α4, and α5. Comparison of the adhesion receptor profile of the LSC population to the blast population from which they derived showed a 23.1% +/− 7.7% (mean ± standard error) increase in the expression of α6, and a decrease by 0.4% ± 2.5% for CD34+ blasts compared with all blasts (p = 0.04, Student t-test). We found that in our sample of 18 pretreatment BM samples the 15 patients having CR had a higher MFI for αL (p = 0.021), a higher % blasts expressing α4 (p = 0.039) and PECAM1 (p = 0.012), and a lower MFI for α2 (p = 0.029), α6 (p = 0.028), and CXCR4 (p = 0.005). The data for α4 and CXCR4 agree with prior publications demonstrating improved outcomes for high α4β1 expression and poorer outcomes with high CXCR4 expression (Blood 2009; 113:866–74, J Clin Oncol 2010; 28:2831–8, Blood 2007; 109:786–91). Analyzing the functional importance of adhesion receptors for AML-stromal interactions, we found that function blocking antibodies to β1 (p = 0.0003, Student two-sided t-test), CXCR4 (p < 0.0001), and E-cadherin (p < 0.00002) most strongly inhibited AML blast adhesion to HS27a, with mean inhibitions of 71%, 67%, and 63% respectively (Fig 1). While β1 and CXCR4 represent known factors in AML-stromal adhesion, we propose a novel role for E-cadherin in AML as a potentially novel therapeutic target whose known biology in other malignancies spans cell-cell adhesion and canonical β-catenin/Wnt signaling. The magnitude of the β1 blocking effect proved consistent with its partnering role with multiple adhesion receptors (e.g. α2, α4, α5, and α6). Analyzing the microenvironment cytokine milieu we found normal BM produced G-CSF, SDF-1, and SCF (6, 3001, and 4857 pg/mL respectively) as expected while some AML specimens produced undetectable levels of G-CSF (4/5 plasmas, 4/5 stromas), SCF (4/5 plasmas), or SDF-1 (2/5 plasmas, 3/5 stromas). Conclusions: Among the 6 receptors correlated with response to induction chemotherapy, high α6 (VLA6 laminin receptor) and CXCR4 MFI correlated with poor outcome. The putative LSC subpopulation showed significantly more α6 expression compared with the entire AML blast population. Antibodies against β1, CXCR4, and E-cadherin exhibited the highest function blocking (60–75% range) of AML-stromal adhesion and our AML-stroma functional assay offers a tool to screen for more novel interactions. Cytokine profiling of the AML microenvironment showed deficiencies in cytokines necessary for normal hematopoiesis which may contribute to the clinical cytopenias in AML. Disclosures: No relevant conflicts of interest to declare.


Haematologica ◽  
2019 ◽  
Vol 105 (6) ◽  
pp. 1539-1551 ◽  
Author(s):  
Nabih Maslah ◽  
Norman Salomao ◽  
Louis Drevon ◽  
Emmanuelle Verger ◽  
Nicolas Partouche ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Giulia Borella ◽  
Ambra Da Ros ◽  
Giulia Borile ◽  
Elena Porcù ◽  
Claudia Tregnago ◽  
...  

Bone marrow (BM) microenvironment contributes to the regulation of normal hematopoiesis through a finely tuned balance of self-renewal and differentiation processes, cell-cell interaction and secretion of cytokines that during leukemogenesis are altered and favor tumor cell growth. In pediatric acute myeloid leukemia (AML), chemotherapy is the standard of care, but still &gt;30% of patients relapse. The need to accelerate the evaluation of innovative medicines prompted us to investigate the mesenchymal stromal cells (MSCs) role in the leukemic niche to define its contribution to the mechanisms of leukemia escape. We generated humanized three-dimensional (3D) niche with AML cells and MSCs derived from either patients (AML-MSCs) or healthy donors. We observed that AML cells establish physical connections with MSCs, mediating a reprogrammed transcriptome inducing aberrant cell proliferation and differentiation, and severely compromising their immunomodulatory capability. We confirmed that AML cells modulate h-MSCs transcriptional profile promoting functions similar to the AML-MSCs when co-cultured in vitro, thus facilitating leukemia progression. Conversely, MSCs derived from BM of patients at time of disease remission showed recovered healthy features, at transcriptional and functional levels, including the secretome. We proved that AML blasts alter MSCs activities in the BM niche, favoring disease development and progression. We discovered that a novel AML-MSCs selective CaV1.2 channel blocker drug, Lercanidipine, is able to impair leukemia progression in 3D niche both in vitro and when implanted in vivo, if used in combination with chemotherapy, supporting the hypothesis that synergistic effects can be obtained by dual targeting approaches.


2011 ◽  
Author(s):  
Karen E. Thudium ◽  
Jason Den Haese ◽  
Adam Karpf ◽  
Gerald Fetterly ◽  
Meir Wetzler

2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Cheng Zhou ◽  
Juan Du ◽  
Liang Zhao ◽  
Wei Liu ◽  
Tianming Zhao ◽  
...  

AbstractAcute myeloid leukemia (AML) is a hematological malignancy with high incidence and recurrence rates. Gene expression profiling has revealed that transcriptional overexpression of glioma‐associated oncogene 1 (GLI1), a vital gene in the Hedgehog (Hh) signaling pathway, occurs in poor-prognosis AML, and high levels of phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1) and AKT3 predict shorter overall survival in AML patients. In this study, we discovered that GLI1 overexpression promotes cell proliferation and reduces chemotherapy sensitivity in AML cells while knocking down GLI1 has the opposite effect. Moreover, GLI1 promoted cell cycle progression and led to elevated protein levels of cyclins and cyclin-dependent kinases (CDKs) in AML cells. By luciferase assays and co-immunoprecipitation, we demonstrated that the PI3K/AKT pathway is directly activated by GLI1. GLI1 overexpression significantly accelerates tumor growth and upregulated p-AKT, CDK4, and cyclinD3 in vivo. Notably, the GLI1 inhibitor GANT61 and the CDK4/6 inhibitor PD 0332991 had synergistic effects in promoting Ara-c sensitivity in AML cell lines and patient samples. Collectively, our data demonstrate that GLI1 reduces drug sensitivity by regulating cell cycle through the PI3K/AKT/GSK3/CDK pathway, providing a new perspective for involving GLI1 and CDK4/6 inhibitors in relapsed/refractory (RR) patient treatment.


Oncogene ◽  
2012 ◽  
Vol 32 (37) ◽  
pp. 4331-4342 ◽  
Author(s):  
E Lainey ◽  
A Wolfromm ◽  
N Marie ◽  
D Enot ◽  
M Scoazec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document