scholarly journals Treadmill Exercise before and during Pregnancy Improves Bone Deficits in Pregnant Growth Restricted Rats without the Exacerbated Effects of High Fat Diet

Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1236
Author(s):  
Kristina Anevska ◽  
Dayana Mahizir ◽  
Jessica F. Briffa ◽  
Andrew J. Jefferies ◽  
John D. Wark ◽  
...  

Growth restriction programs adult bone deficits and increases the risk of obesity, which may be exacerbated during pregnancy. We aimed to determine if high-fat feeding could exacerbate the bone deficits in pregnant growth restricted dams, and whether treadmill exercise would attenuate these deficits. Uteroplacental insufficiency was induced on embryonic day 18 (E18) in Wistar Kyoto (WKY) rats using bilateral uterine vessel ligation (restricted) or sham (control) surgery. The F1 females consumed a standard or high-fat (HFD) diet from 5 weeks, commenced treadmill exercise at 16 weeks, and they were mated at 20 weeks. Femora and plasma from the pregnant dams were collected at post-mortem (E20) for peripheral quantitative computed tomography (pQCT), mechanical testing, histomorphometry, and plasma analysis. Sedentary restricted females had bone deficits compared to the controls, irrespective of diet, where such deficits were prevented with exercise. Osteocalcin increased in the sedentary restricted females compared to the control females. In the sedentary HFD females, osteocalcin was reduced and CTX-1 was increased, with increased peak force and bending stress compared to the chow females. Exercise that was initiated before and continued during pregnancy prevented bone deficits in the dams born growth restricted, whereas a HFD consumption had minimal bone effects. These findings further highlight the beneficial effects of exercise for individuals at risk of bone deficits.

2014 ◽  
Vol 26 (3) ◽  
pp. 385 ◽  
Author(s):  
Tania Romano ◽  
John D. Wark ◽  
Mary E. Wlodek

Fluctuations in maternal bone mass during pregnancy and lactation facilitate calcium transfer to offspring. Uteroplacental insufficiency causes fetal growth restriction and programs poor adult bone health. We aimed to characterise maternal skeletal phenotype during normal pregnancy and pregnancy complicated by uteroplacental insufficiency. Uteroplacental restriction (Restricted) or sham surgery (Control) was performed on gestational Day 18 (term = 22 days) in pregnant Wistar-Kyoto rats. Maternal right femurs were collected on embryonic Day 20, postnatal Day 1 and Weeks 5, 7 and 9 postnatal. Dual-energy X-ray absorptiometry was used to quantify global bone mineral content, density and body composition. Peripheral quantitative computed tomography was utilised to determine trabecular and cortical content, density, circumferences and strength. Control rats exhibited expected reductions in trabecular and cortical content, density and bone strength from embryonic Day 20 to postnatal Day 1 (P < 0.05). These skeletal alterations were absent in Restricted rats. By postnatal Day 7, bone parameters in Control and Restricted rats were not different from non-pregnant rats, indicating restoration of maternal bone. The lack of bone loss in mothers suffering uteroplacental insufficiency suggests that calcium transfer to pups would be impaired. This reduction in calcium availability is a likely contributor to the programming of poor adult bone health in growth-restricted offspring.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yanzhong Zhang ◽  
Mingxing Gu ◽  
Ruru Wang ◽  
Menwan Li ◽  
Daxiang Li ◽  
...  

Abstract Background Diet and exercise play important roles in ameliorating metabolic syndrome. Yunkang 10 (Camellia sinensis var. assamica) is a most cultivated tea variety for making tea in the Southwestern China. Currently, there is no report of healthy effects of Yunkang 10 green tea (YKGT) and treadmill exercise (Ex) on high fat diet induced metabolic syndrome (MetS). We aimed to investigate the beneficial effects and molecular mechanism of YKGT and Ex using high fat diet induced MetS of C57BL/6 mice. Methods Catechins and caffeine in water extract of YKGT were measured via high performance liquid chromatography (HPLC). 10-week old mice were fed with high fat diet (HFD) for 10 weeks to induce obese mice. Then the obese mice were fed with continuous high fat diet (HFD), HFD with YKGT, HFD with Ex, and HFD with both YKGT and Ex for 8 weeks, respectively. The another group of 10-week old mice fed with low fat diet (LFD) were used as control. Results HPLC data revealed that YKGT has abundantly high concentration of epigallocatechin gallate (EGCG) and caffeine compared to Longjing 43 (Camellia sinensis var. sinensis) green tea. YKGT and Ex significantly decreased the level of blood glucose, serum total cholesterol (TC), triglyceride (TG), insulin, and alanine aminotransferase activity (ALT) when compared to HFD group. The fatty liver and hepatic pro-inflammatory gene expression in the YKGT, Ex and YKGT+Ex groups was mitigated significantly compared with HFD group, respectively. The phosphorylation of inhibitor of nuclear factor kappa-B kinase α/β (IKKα/β) and inhibitor of nuclear factor kappa-B α (IkBα) protein in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway was also decreased in YKGT or YKGT+Ex groups. The combination of YKGT and Ex prevented gene expression for lipid synthesis in the liver tissue, and significantly upregulated mRNA level of glucose transport genes in the skeletal muscles, when compared to the HFD group. Conclusions This study demonstrated that YKGT supplement or exercise appeared to reverse preexisting metabolic syndrome, and effectively relieved the fatty liver and hepatic inflammatory response induced by high fat diet. YKGT supplement and treadmill exercise together had better beneficial effects than only one intervention.


2018 ◽  
Vol 314 (2) ◽  
pp. R161-R170 ◽  
Author(s):  
Kristina Anevska ◽  
Jean N. Cheong ◽  
John D. Wark ◽  
Mary E. Wlodek ◽  
Tania Romano

Females born growth restricted have poor adult bone health. Stress exposure during pregnancy increases risk of pregnancy complications. We determined whether maternal stress exposure in growth-restricted females exacerbates long-term maternal and offspring bone phenotypes. On gestational day 18, bilateral uterine vessel ligation (restricted) or sham (control) surgery was performed on Wistar-Kyoto rats. At 4 mo, control and restricted females were mated and allocated to unstressed or stressed pregnancies. Stressed pregnancies had physiological measurements performed; unstressed females were not handled. After birth, mothers were aged to 13 mo. Second-generation (F2) offspring generated four experimental groups: control unstressed, restricted unstressed, control stressed and restricted stressed. F2 offspring were studied at postnatal day 35 (PN35), 6, 12, and 16 mo. Peripheral quantitative computed tomography was performed on maternal and F2 offspring femurs. Restricted females, irrespective of stress during pregnancy, had decreased endosteal circumference, bending strength, and increased osteocalcin concentrations after pregnancy at 13 mo. F2 offspring of stressed mothers were born lighter. F2 male offspring from stressed pregnancies had decreased trabecular content at 6 mo and decreased endosteal circumference at 16 mo. F2 female offspring from growth-restricted mothers had reduced cortical thickness at PN35 and reduced endosteal circumference at 6 mo. At 12 mo, females from unstressed restricted and stressed control mothers had decreased trabecular content. Low birth weight females had long-term bone changes, highlighting programming effects on bone health. Stress during pregnancy did not exacerbate these programmed effects. Male and female offspring responded differently to maternal growth restriction and stress, indicating gender-specific programming effects.


1995 ◽  
Vol 89 (4) ◽  
pp. 447-452 ◽  
Author(s):  
Asghar Mokhtarian ◽  
Jean Pascal Lefaucheur ◽  
Patrick C. Even ◽  
Alain Sebille

1. Dystrophin-deficient hindlimb muscles of mdx mice undergo necrosis at the time of weaning when the motor activity of the mice greatly increases and muscle energy metabolism becomes more dependent on insulin and carbohydrates. 2. We have attempted to determine if the onset of myofibre necrosis in mdx mice at the time of weaning is related to the development of motor activity and/or the change in diet. 3. Fourteen-day-old mdx mice were divided into two groups after weaning. One group was trained to run on a treadmill and the other group was kept on a high-fat diet. Muscle necrosis was assessed histologically in the soleus and extensor digitorum longus muscles of mice in both experiments. 4. Keeping mice on a high-fat milk diet from the time of weaning up to 42 days of age did not influence the occurrence of necrosis in the soleus and extensor digitorum longus muscles of the mdx pups. In contrast, treadmill exercise greatly increased necrosis in both muscles. 5. We conclude that an increase in motor activity exacerbates the degeneration of hindlimb muscles of mdx mice at the time of weaning.


2004 ◽  
Vol 97 (5) ◽  
pp. 1859-1865 ◽  
Author(s):  
J. M. Welch ◽  
C. M. Weaver ◽  
C. H. Turner

Impact exercise can have beneficial effects on the growing skeleton. To understand what changes it promotes in the shafts and ends of weight-bearing bones, we measured the effects of impact from repetitive free falls in growing rats. Fischer 344 female rats, 6.5 wk old, were assigned to one of three groups ( n = 10 each). Controls were not dropped, whereas those subjected to impact were dropped from 30 or 60 cm. Rats in both free-fall groups were dropped 10 times per day for 8 wk. Leg bones were mechanically tested, and their cross-sectional area (CSA), cross-sectional moments of inertia, and volumetric bone mineral density (BMD) were measured by peripheral quantitative computed tomography. In the shafts of the forelimbs, but not the hindlimbs, free-fall impact resulted in greater ultimate breaking force, minimum and maximum second moments of area, and CSA but not BMD. In the bone ends of the forelimb and tibial bones, trabecular BMD increased but CSA did not. Landing from 30 and 60 cm produced peak impact forces of 12.0 and 16.7 times the standing forefoot weight for each front leg and of 4.5 and 7.7 times the standing hind foot weight for each hind foot. Overall, free-fall impact affected the forelimbs by increasing trabecular bone density in the bone ends and improving the strength at the shaft as a result of geometric improvements. These results indicate that adaptation to impact may occur by different mechanisms in bone end and shaft regions.


2013 ◽  
Vol 22 (01) ◽  
pp. 13-17
Author(s):  
J. M. Patsch ◽  
R. Kocijan ◽  
H. Resch ◽  
J. Haschka

ZusammenfassungKnochenstabilität ist durch Knochenvolumen und Mikroarchitektur des Knochens determiniert. Mittels HR-pQCT (high resolution peripheral quantitative computed tomography) steht eine nicht invasive Methode zur Verfügung, um die Mikroarchitektur des Knochens darzustellen. Die Resultate aus zahlreichen Studien geben Rückschlüsse auf unterschiedliche Strukturalterationen im Rahmen von Erkrankungen, die mit einem erhöhten Frakturrisiko einhergehen. Die Knochendichtemessung mittels DXA spiegelt das Frakturrisiko oft nicht adäquat wider. Umso entscheidender ist es, Risikofaktoren in der Wahl der Therapie zu berücksichtigen. Die klinische Relevanz der Resultate aus HR-pQCT-Messungen besteht derzeit dahingehend, dass wertvolle Informationen über Veränderungen der Mikroarchitektur auf Forschungsebene erhoben werden.


2020 ◽  
Author(s):  
C Cai ◽  
S Drexler ◽  
H Gaitantzi ◽  
S Rudolf ◽  
H Luuk ◽  
...  
Keyword(s):  
High Fat ◽  

Sign in / Sign up

Export Citation Format

Share Document