scholarly journals Impact of Epigenetics on Complications of Fanconi Anemia: The Role of Vitamin D-Modulated Immunity

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1355
Author(s):  
Eunike Velleuer ◽  
Carsten Carlberg

Fanconi anemia (FA) is a rare disorder with the clinical characteristics of (i) specific malformations at birth, (ii) progressive bone marrow failure already during early childhood and (iii) dramatically increased risk of developing cancer in early age, such as acute myeloid leukemia and squamous cell carcinoma. Patients with FA show DNA fragility due to a defect in the DNA repair machinery based on predominately recessive mutations in 23 genes. Interestingly, patients originating from the same family and sharing an identical mutation, frequently show significant differences in their clinical presentation. This implies that epigenetics plays an important role in the manifestation of the disease. The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 controls cellular growth, differentiation and apoptosis via the modulation of the immune system. The nuclear hormone activates the transcription factor vitamin D receptor that affects, via fine-tuning of the epigenome, the transcription of >1000 human genes. In this review, we discuss that changes in the epigenome, in particular in immune cells, may be central for the clinical manifestation of FA. These epigenetic changes can be modulated by vitamin D suggesting that the individual FA patient’s vitamin D status and responsiveness are of critical importance for disease progression.

2013 ◽  
Vol 305 (1) ◽  
pp. C70-C77 ◽  
Author(s):  
Ekaterina Shumilina ◽  
Meerim K. Nurbaeva ◽  
Wenting Yang ◽  
Evi Schmid ◽  
Kalina Szteyn ◽  
...  

The function of dendritic cells (DCs), antigen-presenting cells regulating naïve T-cells, is regulated by cytosolic Ca2+ concentration ([Ca2+]i). [Ca2+]i is increased by store-operated Ca2+ entry and decreased by K+-independent (NCX) and K+-dependent (NCKX) Na+/Ca2+ exchangers. NCKX exchangers are stimulated by immunosuppressive 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the biologically active form of vitamin D. Formation of 1,25(OH)2D3 is inhibited by the antiaging protein Klotho. Thus 1,25(OH)2D3 plasma levels are excessive in Klotho-deficient mice ( klotho hm). The present study explored whether Klotho deficiency modifies [Ca2+]i regulation in DCs. DCs were isolated from the bone marrow of klotho hm mice and wild-type mice ( klotho+/+) and cultured for 7–9 days with granulocyte-macrophage colony-stimulating factor. According to major histocompatibility complex II (MHC II) and CD86 expression, differentiation and lipopolysaccharide (LPS)-induced maturation were similar in klotho hm DCs and klotho+/+ DCs. However, NCKX1 membrane abundance and NCX/NCKX-activity were significantly enhanced in klotho hm DCs. The [Ca2+]i increase upon acute application of LPS (1 μg/ml) was significantly lower in klotho hm DCs than in klotho+/+ DCs, a difference reversed by the NCKX blocker 3′,4′-dichlorobenzamyl (DBZ; 10 μM). CCL21-dependent migration was significantly less in klotho hm DCs than in klotho+/+ DCs but could be restored by DBZ. NCKX activity was enhanced by pretreatment of klotho+/+ DC precursors with 1,25(OH)2D3 the first 2 days after isolation from bone marrow. Feeding klotho hm mice a vitamin D-deficient diet decreased NCKX activity, augmented LPS-induced increase of [Ca2+]i, and enhanced migration of klotho hm DCs, thus dissipating the differences between klotho hm DCs and klotho+/+ DCs. In conclusion, Klotho deficiency upregulates NCKX1 membrane abundance and Na+/Ca2+-exchange activity, thus blunting the increase of [Ca2+]i following LPS exposure and CCL21-mediated migration. The effects are in large part due to excessive 1,25(OH)2D3 formation.


2006 ◽  
Vol 52 (2) ◽  
pp. 248-254 ◽  
Author(s):  
Ziad H Al-oanzi ◽  
Stephen P Tuck ◽  
Nicholas Raj ◽  
John S Harrop ◽  
Gregory D Summers ◽  
...  

Abstract Background: Clinical assessment of vitamin D status often relies on measuring total circulating 25-hydroxyvitamin D3 (25OHD3), but much of each vitamin D metabolite is bound to plasma vitamin D–binding protein (DBP), such that the percentage of free vitamin is very low. We hypothesized that measurement of free rather than total 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and 25OHD3 may provide better assessment of vitamin D status. We therefore aimed to assess vitamin D status in men with idiopathic osteoporosis, in whom possible secondary causes of osteoporosis had been excluded, and to determine the extent of change in biologically active “free” vitamin D caused by variation in plasma DBP concentrations. Methods: We measured 1,25(OH)2D3 and 25OHD3 in plasma samples from 56 men with idiopathic osteoporosis [mean (SD) age, 59.6 (13.6) years; range, 21–86 years] and 114 male controls [62.4 (10.4) years; range, 44–82 years]. Results: Mean total plasma 25OHD3 in the 56 men with osteoporosis and the 114 controls was 44.7 (21) and 43.3 (17) nmol/L, respectively; total plasma 1,25(OH)2D3 measured in randomly selected men with osteoporosis (n = 50) and controls (n = 50) was 90 (37) and 103 (39) pmol/L, respectively. Mean plasma DBP was significantly higher (P <0.001) in men with osteoporosis [224 (62) mg/L; n = 56] than in the controls [143 (34) mg/L; n = 114], but calculated free plasma 25OHD3 and 1,25(OH)2D3 were significantly lower in the osteoporotic men than in controls [6.1 (3.1) vs 9.1 (4.4) pmol/L (P <0.00001) and 77 (37) vs 142 (58) fmol/L (P <0.00001), respectively]. Conclusions: Measurement of total vitamin D metabolites alone, although providing a crude assessment of vitamin D status, may not give an accurate indication of the free (biologically active) form of the vitamin. The ratio of total 25OHD3 and 1,25(OH)2D3 to plasma DBP, rather than total circulating vitamin D metabolites, may provide a more useful index of biological activity. Further studies are required to substantiate this hypothesis.


1990 ◽  
Vol 1 (1) ◽  
pp. 30-42
Author(s):  
R Kumar

Vitamin D3 undergoes sequential hydroxylations in the liver and kidney to form 1,25-dihydroxyvitamin D3, the biologically active form of the vitamin. 1,25-dihydroxyvitamin D3 is metabolized by several processes in various target tissues that decrease the biological activity of the sterol. In addition, 1,25-dihydroxyvitamin D3 is excreted in the bile as polar metabolites, such as glucuronides and, possibly sulfates and neutral polar steroids. These compounds undergo an enterohepatic recirculation in both man and experimental animals. 1,25-dihydroxyvitamin D3 increases the absorption of calcium in the intestine and the reabsorption of calcium in the kidney. It induces the synthesis of several proteins, the most notable of which is calcium binding protein that is thought to play a role in the absorption of calcium. The vitamin D-dependent calcium binding proteins and the calcium-magnesium ATPase calcium pump are co-localized in several tissues that play a role in the absorption of calcium.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1140 ◽  
Author(s):  
Oona Koivisto ◽  
Andrea Hanel ◽  
Carsten Carlberg

The biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), modulates innate and adaptive immunity via genes regulated by the transcription factor vitamin D receptor (VDR). In order to identify the key vitamin D target genes involved in these processes, transcriptome-wide datasets were compared, which were obtained from a human monocytic cell line (THP-1) and peripheral blood mononuclear cells (PBMCs) treated in vitro by 1,25(OH)2D3, filtered using different approaches, as well as from PBMCs of individuals supplemented with a vitamin D3 bolus. The led to the genes ACVRL1, CAMP, CD14, CD93, CEBPB, FN1, MAPK13, NINJ1, LILRB4, LRRC25, SEMA6B, SRGN, THBD, THEMIS2 and TREM1. Public epigenome- and transcriptome-wide data from THP-1 cells were used to characterize these genes based on the level of their VDR-driven enhancers as well as the level of the dynamics of their mRNA production. Both types of datasets allowed the categorization of the vitamin D target genes into three groups according to their role in (i) acute response to infection, (ii) infection in general and (iii) autoimmunity. In conclusion, 15 genes were identified as major mediators of the action of vitamin D in innate and adaptive immunity and their individual functions are explained based on different gene regulatory scenarios.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3624-3624
Author(s):  
Nicholas Economou Khan ◽  
Philip S. Rosenberg ◽  
Blanche P. Alter

Abstract Background: Fanconi anemia (FA) is a primarily autosomal recessive bone marrow failure and cancer predisposition syndrome associated with mutations in the FA/BRCA DNA damage response pathway. The median age at diagnosis of FA is 7 years; the diagnosis is often made due to recognition of characteristic birth defects. Over half of patients with FA develop severe bone marrow failure (BMF) by age 50 years, one in ten develop acute myeloid leukemia (AML), and one in four develop a solid tumor (ST) as their first event. Successful allogeneic bone marrow transplantation (BMT) is potentially curative of FA's hematologic manifestations but introduces risks of transplant-related mortality (TRM) and morbidity. We hypothesized that preemptive bone marrow transplantation (PE-BMT) for individuals diagnosed prior to the development of BMF, AML, or ST, would increase event-free survival (EFS) if the risks associated with transplantation were sufficiently low. Methods: We developed a mathematical decision model (Markov) of EFS with the assumption that successful PE-BMT would eliminate the risks of BMF and AML, but would introduce a procedural risk of TRM. We modeled the EFS of PE-BMT at variable ages at decision ranging from birth to 30 years, and without and with an increase in the rate of ST following BMT above the level in untransplanted patients with FA. We developed our model using empirical estimates of the age-specific conditional probabilities of BMF, AML, and ST (Alter et al, BJH, 2010), and a 4.4-fold estimated increased risk of ST following BMT (Rosenberg et al, Blood, 2005). We tested the sensitivity of the model over a range of values for TRM and an increased risk of ST following BMT, and evaluated the model using TreeAge Pro 2014 (TreeAge Software, Inc, Williamstown MA, http://www.treeage.com). Results: Children diagnosed at age 7 years receiving standard care could expect to live an additional 16 years before experiencing BMF, ST, or AML, and thus survive free of an event until an average age of 23 years. If those children instead received PE-BMT with a 10% risk of TRM, they could expect to survive an additional 29 years and be cancer-free until an average age of 36 years. However, if PE-BMT were to increase the rate of ST 4.4-fold, PE-BMT would only increase the mean EFS by 2 years over standard care, until an average age of 25 years. PE-BMT would increase the mean EFS at all ages if TRM was ≤10% and the risk of ST was the same as in untransplanted patients. PE-BMT would decrease the mean EFS when performed after age 9 years if there was 10% TRM and a 4.4-fold increased rate of ST. PE-BMT at age 18 years with 10% TRM would increase the mean EFS if it did not affect the trajectory to ST, but would decrease the mean EFS if it modestly increased the rate of ST (≥2.2-fold). Conclusions: PE-BMT in patients with FA may provide an event-free survival benefit so long as the risk of TRM appears to be low (≤10%) and the regimen has little or no impact on the development of ST. The decision was particularly sensitive to the increase in ST following BMT. Our model suggests that older ages at decision, higher risks of TRM, and greater relative risks of ST following transplant would lead to PE-BMT being a less desirable strategy. Our estimates of event-free survival may be used to inform shared decision making between providers and families, with attention paid to patient values and the morbidity associated with BMT. Disclosures No relevant conflicts of interest to declare.


Endocrinology ◽  
2010 ◽  
Vol 152 (2) ◽  
pp. 354-363 ◽  
Author(s):  
Yongji Wang ◽  
Hector F. DeLuca

Abstract The active form of vitamin D, 1α,25-dihydroxyvitamin D3, is critical for the regulation of serum calcium and phosphorus levels that in turn support bone mineralization and neuromuscular activity. It is well known that vitamin D deficiency causes rachitic/osteomalacic myopathy and cardiac disorder and the provision of vitamin D can reverse the symptoms. However, the underlying mechanisms remain unclear. The question of whether the vitamin D receptor is found in muscle has been debated but not settled. We recently studied all available antibodies against the vitamin D receptor and found that most antibodies used detect proteins other than the vitamin D receptor, and therefore, the utility of these antibodies may generate the false-positive results. Using antibodies that do not detect proteins in tissues from vitamin D receptor null mice, we have developed a specific and sensitive immunohistochemical assay. The results from this investigation show that the vitamin D receptor is undetectable in skeletal, cardiac, and smooth muscle, suggesting that the function of vitamin D on muscle is either of an indirect nature or does not involve the known receptor.


1985 ◽  
Vol 109 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Nirandon Wongsurawat ◽  
H. James Armbrecht

Abstract. Previous studies have shown that there is an impairment in renal production of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the major biologically active metabolite of vitamin D3, in diabetes. This impairment is not due to a deficiency in the parathyroid hormone (PTH), a major stimulator of renal 1,25(OH)2D3 production. Therefore, we have investigated the capacity of PTH to stimulate 1,25(OH)2D3 production in insulin deficiency and with insulin replacement. Experiments were performed in rats fed a 0.6% calcium, vitamin D sufficient diet for 2 weeks. Thyroparathyroidectomy was performed on all rats. Rats to be rendered diabetic were injected with streptozotocin immediately after surgery. In non-diabetic rats, PTH administration significantly increased renal 1,25(OH)2D3 production (11 ± 2 vs 46 ± 5 pg/min/g; P < 0.05). In diabetic rats, however, PTH caused only a modest increase in 1,25(OH)2D3 production (11 ± 1 vs 19 ± 4 pg/min/g; P < 0.05). With insulin replacement, PTH stimulation of 1,25(OH)2D3 production was markedly increased over that seen in diabetic rats (48 ± 12 vs 19 ± 4 pg/min/g; P < 0.05). PTH was equally effective in raising serum calcium, depressing serum phosphorus and tubular reabsorption of phosphate in non-diabetic as well as in diabetic rats. These results demonstrate that insulin is necessary for the maximal stimulation of renal 1,25(OH)2D3 production by PTH. However, insulin is not necessary for PTH action in terms of renal handling of phosphate and inducing hypercalcaemia. These results suggest multiple pathways for the action of PTH, only some of which are insulin requiring.


2021 ◽  
Vol 12 ◽  
Author(s):  
Henna-Riikka Malmberg ◽  
Andrea Hanel ◽  
Mari Taipale ◽  
Sami Heikkinen ◽  
Carsten Carlberg

Microbe-associated molecular patterns, such as lipopolysaccharide (LPS) and β-glucan (BG), are surrogates of immune challenges like bacterial and fungal infections, respectively. The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), supports the immune system in its fight against infections. This study investigated significant and prominent changes of the transcriptome of human peripheral blood mononuclear cells that immediately after isolation are exposed to 1,25(OH)2D3-modulated immune challenges over a time frame of 24-48 h. In this in vitro study design, most LPS and BG responsive genes are downregulated and their counts are drastically reduced when cells are treated 24 h after, 24 h before or in parallel with 1,25(OH)2D3. Interestingly, only a 1,25(OH)2D3 pre-treatment of the LPS challenge results in a majority of upregulated genes. Based on transcriptome-wide data both immune challenges display characteristic differences in responsive genes and their associated pathways, to which the actions of 1,25(OH)2D3 often oppose. The joined BG/1,25(OH)2D3 response is less sensitive to treatment sequence than that of LPS/1,25(OH)2D3. In conclusion, the functional consequences of immune challenges are significantly modulated by 1,25(OH)2D3 but largely depend on treatment sequence. This may suggest that a sufficient vitamin D status before an infection is more important than vitamin D supplementation afterwards.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
John H. White

Vitamin D deficiency, characterized by low circulating levels of calcifediol (25-hydroxyvitamin D, 25D) has been linked to increased risk of infections of bacterial and viral origin. Innate immune cells produce hormonal calcitriol (1,25-dihydroxyvitamin D, 1,25D) locally from circulating calcifediol in response to pathogen threat and an immune-specific cytokine network. Calcitriol regulates gene expression through its binding to the vitamin D receptor (VDR), a ligand-regulated transcription factor. The hormone-bound VDR induces the transcription of genes integral to innate immunity including pattern recognition receptors, cytokines, and most importantly antimicrobial peptides (AMPs). Transcription of the human AMP genes β-defensin 2/defensin-β4 (HBD2/DEFB4) and cathelicidin antimicrobial peptide (CAMP) is stimulated by the VDR bound to promoter-proximal vitamin D response elements. HDB2/DEFB4 and the active form of CAMP, the peptide LL-37, which form amphipathic secondary structures, were initially characterized for their antibacterial actively. Notably, calcitriol signaling induces secretion of antibacterial activity in vitro and in vivo, and low circulating levels of calcifediol are associated with diverse indications characterized by impaired antibacterial immunity such as dental caries and urinary tract infections. However, recent work has also provided evidence that the same AMPs are components of 1,25D-induced antiviral responses, including those against the etiological agent of the COVID-19 pandemic, the SARS-CoV2 coronavirus. This review surveys the evidence for 1,25D-induced antimicrobial activity in vitro and in vivo in humans and presents our current understanding of the potential mechanisms by which CAMP and HBD2/DEFB4 contribute to antiviral immunity.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 130
Author(s):  
Ayana Yoshihara ◽  
Haru Kawasaki ◽  
Hiroyuki Masuno ◽  
Koki Takada ◽  
Nobutaka Numoto ◽  
...  

1α,25-Dihydroxyvitamin D3 [1α,25(OH)2D3, 1] is an active form of vitamin D3 and regulates various biological phenomena, including calcium and phosphate homeostasis, bone metabolism, and immune response via binding to and activation of vitamin D receptor (VDR). Lithocholic acid (LCA, 2) was identified as a second endogenous agonist of VDR, though its potency is very low. However, the lithocholic acid derivative 3 (Dcha-20) is a more potent agonist than 1α,25(OH)2D3, (1), and its carboxyl group has similar interactions to the 1,3-dihydroxyl groups of 1 with amino acid residues in the VDR ligand-binding pocket. Here, we designed and synthesized amide derivatives of 3 in order to clarify the role of the carboxyl group. The synthesized amide derivatives showed HL-60 cell differentiation-inducing activity with potency that depended upon the substituent on the amide nitrogen atom. Among them, the N-cyanoamide 6 is more active than either 1 or 3.


Sign in / Sign up

Export Citation Format

Share Document