scholarly journals Selenium, a Micronutrient That Modulates Cardiovascular Health via Redox Enzymology

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3238
Author(s):  
Diane E. Handy ◽  
Jacob Joseph ◽  
Joseph Loscalzo

Selenium (Se) is a trace nutrient that promotes human health through its incorporation into selenoproteins in the form of the redox-active amino acid selenocysteine (Sec). There are 25 selenoproteins in humans, and many of them play essential roles in the protection against oxidative stress. Selenoproteins, such as glutathione peroxidase and thioredoxin reductase, play an important role in the reduction of hydrogen and lipid hydroperoxides, and regulate the redox status of Cys in proteins. Emerging evidence suggests a role for endoplasmic reticulum selenoproteins, such as selenoproteins K, S, and T, in mediating redox homeostasis, protein modifications, and endoplasmic reticulum stress. Selenoprotein P, which functions as a carrier of Se to tissues, also participates in regulating cellular reactive oxygen species. Cellular reactive oxygen species are essential for regulating cell growth and proliferation, protein folding, and normal mitochondrial function, but their excess causes cell damage and mitochondrial dysfunction, and promotes inflammatory responses. Experimental evidence indicates a role for individual selenoproteins in cardiovascular diseases, primarily by modulating the damaging effects of reactive oxygen species. This review examines the roles that selenoproteins play in regulating vascular and cardiac function in health and disease, highlighting their antioxidant and redox actions in these processes.

2004 ◽  
Vol 279 (19) ◽  
pp. 20108-20117 ◽  
Author(s):  
Sara B. Cullinan ◽  
J. Alan Diehl

The accumulation of unfolded proteins elicits a cellular response that triggers both pro-survival and pro-apoptotic signaling events. PERK-dependent activation of NF-E2-related factor-2 (Nrf2) is critical for survival signaling during this response; however, the mechanism whereby Nrf2 confers a protective advantage to stressed cells remains to be defined. We now demonstrate that Nrf2 activation contributes to the maintenance of glutathione levels, which in turn functions as a buffer for the accumulation of reactive oxygen species during the unfolded protein response. The deleterious effects of Nrf2 or PERK deficiencies could be attenuated by the restoration of cellular glutathione levels or Nrf2 activity. In addition, the inhibition of reactive oxygen species production attenuated apoptotic induction following endoplasmic reticulum stress. Our data suggest that perturbations in cellular redox status sensitize cells to the harmful effects of endoplasmic reticulum stress, but that other factors are essential for apoptotic commitment.


Author(s):  
Ying Wen ◽  
Zhiqing Long ◽  
Fangjun Huo ◽  
Caixia Yin

Redox homeostasis is key to maintaining the normal physiological status of living cells.


The Analyst ◽  
2021 ◽  
Author(s):  
Ya-Nan Wei ◽  
Bo Lin ◽  
Yang Shu ◽  
Jian-Hua Wang

As an indispensable biothiol, cysteine (Cys) plays a critical part in cellular redox homeostasis, pathological and physiological processes. One of the main sources of reactive oxygen species (ROS) in human...


Drug Research ◽  
2019 ◽  
Vol 69 (10) ◽  
pp. 528-536
Author(s):  
Najat Bouchmaa ◽  
Reda Ben Mrid ◽  
Youness Boukharsa ◽  
Youssef Bouargalne ◽  
Mohamed Nhiri ◽  
...  

Abstract Background In cancer cells, the intracellular antioxidant capacity and the redox homeostasis are mainly maintained by the glutathione- and thioredoxin-dependent systems which are considered as promising targets for anticancer drugs. Pyridazinones constitute an interesting source of heterocyclic compounds for drug discovery. The present investigation focused on studying the in-vitro antitumor activity of newly synthesized Pyridazin-3(2h)-ones derivatives against P815 (Murin mastocytoma) cell line. Methods The in-vitro cytotoxic activities were investigated toward the P815 cell line using tetrazolium-based MTT assay. Lipid peroxidation and the specific activities of antioxidant enzymes were also determined. Results The newly compounds had a selective dose-dependent cytotoxic effect without affecting normal cells (PBMCs). Apoptosis was further confirmed through the characteristic apoptotic morphological changes and DNA fragmentation. Two compounds (6f and 7h) were highly cytotoxic and were submitted to extend biological testing to determine the likely mechanisms of their cytotoxicity. Results showed that these molecules may induce cytotoxicity via disturbing the redox homeostasis. Importantly, the anticancer activity of 6f and 7h could be due to the intracellular reactive oxygen species hypergeneration through significant loss of glutathione reductase and thioredoxin reductase activities. This eventually leads to oxidative stress-mediated P815 cell apoptosis. Furthermore, the co-administration of 6f or 7h with Methotrexate exhibited a synergistic cytotoxic effect. Conclusions considering their significant anticancer activity and chemosensitivity, 6f and 7h may improve the therapeutic efficacy of the current treatment for cancer.


Transfusion ◽  
1997 ◽  
Vol 37 (2) ◽  
pp. 160-165 ◽  
Author(s):  
AJ Anand ◽  
WH Dzik ◽  
A Imam ◽  
SM Sadrzadeh

2021 ◽  
Author(s):  
Daisuke Oikawa ◽  
Min Gi ◽  
Hidetaka Kosako ◽  
Kouhei Shimizu ◽  
Hirotaka Takahashi ◽  
...  

Deubiquitylating enzymes (DUBs) regulate numerous cellular functions by removing ubiquitin modifications. We examined the effects of 88 human DUBs on linear ubiquitin chain assembly complex (LUBAC)-induced NF-κB activation, and identified OTUD1 as a potent suppressor. OTUD1 regulates the canonical NF-κB pathway by hydrolysing K63-linked ubiquitin chains from NF-κB signalling factors, including LUBAC. OTUD1 negatively regulates the canonical NF-κB activation, apoptosis, and necroptosis, whereas OTUD1 upregulates the interferon (IFN) antiviral pathway. The N-terminal intrinsically disordered region of OTUD1, which contains an EGTE motif, is indispensable for KEAP1-binding and NF-κB suppression. OTUD1 is involved in the KEAP1-mediated antioxidant response and reactive oxygen species (ROS)-induced cell death, oxeiptosis. In Otud1-/--mice, inflammation, oxidative damage, and cell death were enhanced in inflammatory bowel disease, acute hepatitis, and sepsis models. Thus, OTUD1 is a crucial regulator for the inflammatory, innate immune, and oxidative stress responses and ROS-associated cell death pathways.


Sign in / Sign up

Export Citation Format

Share Document