scholarly journals Acute L-Citrulline Supplementation Increases Nitric Oxide Bioavailability but Not Inspiratory Muscle Oxygenation and Respiratory Performance

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3311
Author(s):  
Anastasios Theodorou ◽  
Panagiotis Zinelis ◽  
Vassiliki Malliou ◽  
Panagiotis Chatzinikolaou ◽  
Nikos Margaritelis ◽  
...  

The present study aimed to investigate whether acute L-citrulline supplementation would affect inspiratory muscle oxygenation and respiratory performance. Twelve healthy males received 6 g of L-citrulline or placebo in a double-blind crossover design. Pulmonary function (i.e., forced expired volume in 1 s, forced vital capacity and their ratio), maximal inspiratory pressure (MIP), fractional exhaled nitric oxide (NO•), and sternocleidomastoid muscle oxygenation were measured at baseline, one hour post supplementation, and after an incremental resistive breathing protocol to task failure of the respiratory muscles. The resistive breathing task consisted of 30 inspirations at 70% and 80% of MIP followed by continuous inspirations at 90% of MIP until task failure. Sternocleidomastoid muscle oxygenation was assessed using near-infrared spectroscopy. One-hour post-L-citrulline supplementation, exhaled NO• was significantly increased (19.2%; p < 0.05), and this increase was preserved until the end of the resistive breathing (16.4%; p < 0.05). In contrast, no difference was observed in the placebo condition. Pulmonary function and MIP were not affected by the L-citrulline supplementation. During resistive breathing, sternocleidomastoid muscle oxygenation was significantly reduced, with no difference noted between the two supplementation conditions. In conclusion, a single ingestion of 6 g L-citrulline increased NO• bioavailability but not the respiratory performance and inspiratory muscle oxygenation.

2002 ◽  
Vol 87 (5) ◽  
pp. 601-611 ◽  
Author(s):  
John M. Kowalchuk‡ ◽  
Harry B. Rossiter ◽  
Susan A. Ward ◽  
Brian J. Whipp

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 555
Author(s):  
Mégane Erblang ◽  
Fabien Sauvet ◽  
Catherine Drogou ◽  
Michaël Quiquempoix ◽  
Pascal Van Beers ◽  
...  

This study investigated whether four single nucleotide polymorphisms (SNPs) moderated caffeine effects on vigilance and performance in a double-blind and crossover total sleep deprivation (TSD) protocol in 37 subjects. In caffeine (2 × 2.5 mg/kg/24 h) or placebo-controlled condition, subjects performed a psychomotor vigilance test (PVT) and reported sleepiness every six hours (Karolinska sleepiness scale (KSS)) during TSD. EEG was also analyzed during the 09:15 PVT. Carriers of the TNF-α SNP A allele appear to be more sensitive than homozygote G/G genotype to an attenuating effect of caffeine on PVT lapses during sleep deprivation only because they seem more degraded, but they do not perform better as a result. The A allele carriers of COMT were also more degraded and sensitive to caffeine than G/G genotype after 20 h of sleep deprivation, but not after 26 and 32 h. Regarding PVT reaction time, ADORA2A influences the TSD effect but not caffeine, and PER3 modulates only the caffeine effect. Higher EEG theta activity related to sleep deprivation was observed in mutated TNF-α, PER3, and COMT carriers, in the placebo condition particularly. In conclusion, there are genetic influences on neurobehavioral impairments related to TSD that appear to be attenuated by caffeine administration. (NCT03859882).


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
P Chatzinikolaou ◽  
N Cornelis ◽  
J Claes ◽  
R Buys ◽  
I Fourneau ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background. Intermittent claudication (IC) is characterized by a cramp-like pain during walking caused by insufficient blood flow to the lower limbs during exercise. The walking impairment caused by IC can lead to a vicious cycle of physical inactivity, decreased quality of life and progression of cardiovascular risk factors. Although current evidence supports the benefits of walking training to increase walking capacity, little is known about its effect on muscle oxygenation in this population. Purpose. The aim of this study was to investigate the effects of a hybrid 12-week walking program (combined center- and home-based walking) on muscle oxygenation of IC patients. Methods. Thirty-seven patients with IC were enrolled of which 33 completed follow-up measurements (age 71 ± 9 yrs, body mass index 26 ± 4 kg/m2, ankle brachial index (ABI) 0.7 ± 0.2) after the 12-week intervention. Outcome measures were pain-free walking capacity (PFWC), maximal walking capacity (MWC) and calf muscle oxygenation, respectively evaluated using a submaximal treadmill test, a Gardner treadmill test and near-infrared spectroscopy (NIRS). Results. After the 12-week intervention, significantly higher values (reported as median and interquartiles) for PFWC (162 m [122, 217] to 272 m [150, 401]; p &lt; 0.001) and MWC (458 m [260, 638] to 611 m [333, 840]; p &lt; 0.001) were observed. As shown in Table 1, NIRS data measured during the submaximal walking test showed an increased availability of oxygenated hemoglobin (p = 0.048) and decreased deoxyhemoglobin (p = 0.013), while total hemoglobin remained unchanged after the 12-week intervention. During the Gardner test, time to reach minimum tissue saturation index (TSI%) increased (p &lt; 0.001), yet no change was noted on minimum TSI during exercise, despite increased MWC. Despite a trend towards faster recovery times, no significant changes were observed after the 12-week intervention. Conclusion. Hybrid walking exercise therapy improves deoxygenation kinetics and walking capacity in IC patients. Increased availability of oxygenated hemoglobin might underly the improvement in walking capacity.


2021 ◽  
pp. 1-23
Author(s):  
Kosar Valaei ◽  
Javad Mehrabani ◽  
Alexei Wong

Abstract L-citrulline (L-Cit) is a nonessential amino acid that stimulates nitric oxide (NO) production and improves exercise performance by reducing muscle damage indices; however, the direct benefits of L-Cit on antioxidant markers are unclear. The aim of this study was to examine antioxidant responses to high-intensity interval exercise following acute L-Cit supplementation. Nine young men (21 ± 1 years) participated in a double-blind crossover study in which they received 12 g of L-Cit and placebo (PL) an hour prior to high-intensity interval exercise on two occasions, separated by a seven-day washout period. Blood samples were obtained before (PRE), immediately after (IP), 10 (10P), and 30 min after exercise (30P) from the cubital vein using standard procedures. Serum concentrations of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and NO metabolites (NOx) were measured. The exercise protocol significantly elevated SOD (p = 0.01) and GPx (p = 0.048) from PRE to 10P in the L-Cit group with greater changes than the PL group. CAT concentrations increased IP (p = 0.014) and remained elevated at 10P (p = 0.03) and 30P (p = 0.015) in both the L-Cit and PL conditions. NOx concentrations increased IP (p = 0.05) in the L-Cit group with greater changes than PL group in PRE to IP, PRE to 10P, and PRE to 30P (p < 0.05). Our data indicate that L-Cit supplementation (single 12 g dose pre-exercise) induces improvements in antioxidant markers following a session of high-intensity interval exercise in young men.


Sign in / Sign up

Export Citation Format

Share Document