scholarly journals What is the Impact of Energy Expenditure on Energy Intake?

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3508
Author(s):  
Anja Bosy-Westphal ◽  
Franziska A. Hägele ◽  
Manfred J. Müller

Coupling energy intake (EI) to increases in energy expenditure (EE) may be adaptively, compensatorily, or maladaptively leading to weight gain. This narrative review examines if functioning of the homeostatic responses depends on the type of physiological perturbations in EE (e.g., due to exercise, sleep, temperature, or growth), or if it is influenced by protein intake, or the extent, duration, timing, and frequency of EE. As different measures to increase EE could convey discrepant neuronal or humoral signals that help to control food intake, the coupling of EI to EE could be tight or loose, which implies that some ways to increase EE may have advantages for body weight regulation. Exercise, physical activity, heat exposure, and a high protein intake favor weight loss, whereas an increase in EE due to cold exposure or sleep loss likely contributes to an overcompensation of EI, especially in vulnerable thrifty phenotypes, as well as under obesogenic environmental conditions, such as energy dense high fat—high carbohydrate diets. Irrespective of the type of EE, transient elevations in the metabolic rate seem to be general risk factors for weight gain, because a subsequent decrease in energy requirement is not compensated by an adequate adaptation of appetite and EI.

2015 ◽  
Vol 75 (3) ◽  
pp. 319-327 ◽  
Author(s):  
David J. Clayton ◽  
Lewis J. James

The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alessio Basolo ◽  
Takafumi Ando ◽  
Douglas C. Chang ◽  
Tim Hollstein ◽  
Jonathan Krakoff ◽  
...  

ObjectiveCirculating albumin is negatively associated with adiposity but whether it is associated with increased energy intake, lower energy expenditure or weight gain has not been examined.MethodsIn study 1 (n=238; 146 men), we evaluated whether fasting albumin concentration was associated with 24-h energy expenditure and ad libitum energy intake. In study 2 (n=325;167 men), we evaluated the association between plasma albumin and change in weight and body composition.ResultsAfter adjustment for known determinants of energy intake lower plasma albumin concentration was associated with greater total daily energy intake (β= 89.8 kcal/day per 0.1 g/dl difference in plasma albumin, p=0.0047). No associations were observed between plasma albumin concentrations and 24-h energy expenditure or 24-h respiratory quotient (p>0.2). Over 6 years, volunteers gained on average 7.5 ± 11.7 kg (p<0.0001). Lower albumin concentrations were associated with greater weight [β=3.53 kg, p=0.039 (adjusted for age, sex, follow up time), CI 0.16 to 6.21 per 1 g/dl difference albumin concentration] and fat mass (β=2.3 kg, p=0.022), respectively, but not with changes in fat free mass (p=0.06).ConclusionsLower albumin concentrations were associated with increased ad libitum food intake and weight gain, indicating albumin as a marker of energy intake regulation.Clinical Trial RegistrationClinicalTrials.gov, identifiers NCT00340132, NCT00342732.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3893 ◽  
Author(s):  
Desiree M. Sigala ◽  
Adrianne M. Widaman ◽  
Bettina Hieronimus ◽  
Marinelle V. Nunez ◽  
Vivien Lee ◽  
...  

Sugar-sweetened beverage (sugar-SB) consumption is associated with body weight gain. We investigated whether the changes of (Δ) circulating leptin contribute to weight gain and ad libitum food intake in young adults consuming sugar-SB for two weeks. In a parallel, double-blinded, intervention study, participants (n = 131; BMI 18–35 kg/m2; 18–40 years) consumed three beverages/day containing aspartame or 25% energy requirement as glucose, fructose, high fructose corn syrup (HFCS) or sucrose (n = 23–28/group). Body weight, ad libitum food intake and 24-h leptin area under the curve (AUC) were assessed at Week 0 and at the end of Week 2. The Δbody weight was not different among groups (p = 0.092), but the increases in subjects consuming HFCS- (p = 0.0008) and glucose-SB (p = 0.018) were significant compared with Week 0. Subjects consuming sucrose- (+14%, p < 0.0015), fructose- (+9%, p = 0.015) and HFCS-SB (+8%, p = 0.017) increased energy intake during the ad libitum food intake trial compared with subjects consuming aspartame-SB (−4%, p = 0.0037, effect of SB). Fructose-SB decreased (−14 ng/mL × 24 h, p = 0.0006) and sucrose-SB increased (+25 ng/mL × 24 h, p = 0.025 vs. Week 0; p = 0.0008 vs. fructose-SB) 24-h leptin AUC. The Δad libitum food intake and Δbody weight were not influenced by circulating leptin in young adults consuming sugar-SB for 2 weeks. Studies are needed to determine the mechanisms mediating increased energy intake in subjects consuming sugar-SB.


2020 ◽  
Vol 150 (5) ◽  
pp. 1330-1336
Author(s):  
Amy L Korth ◽  
Surabhi Bhutani ◽  
Marian L Neuhouser ◽  
Shirley A Beresford ◽  
Linda Snetselaar ◽  
...  

ABSTRACT Background Multiple methods of correcting nutrient intake for misreported energy intake have been proposed but have not been extensively compared. The availability of the Women's Health Initiative (WHI) data set, which includes several objective recovery biomarkers, offers an opportunity to compare these corrections with respect to protein intake. Objective We compared 5 energy-correction methods for self-reported dietary protein against urinary nitrogen–derived protein intake. Methods As part of the WHI Nutritional Biomarkers Study (NBS) 544 participants (50- to 80-y-old women) completed a FFQ and biomarker assessments using doubly labeled water (DLW) for total energy expenditure (TEE) and 24-h urinary nitrogen. Correction methods evaluated were as follows: 1) DLW-TEE; 2) the Institute of Medicine's (IOM's) estimated energy requirement (EER) TEE prediction equation based on sex, height, weight, and age; 3) published NBS total energy TEE prediction (WHI-NBS-TEE) using age, BMI, race, and income; 4) reported protein versus reported energy linear regression–based residual method; and 5) a Goldberg cutoff to exclude subjects reporting energy intakes &lt;1.35 times their basal metabolic rate. Efficacy was evaluated using correlations obtained by regressing corrected protein against biomarker protein (6.25 × urinary nitrogen/0.81). Results Unadjusted self-reported protein intake from the FFQ (mean = 66.7 g) correlated weakly (r = 0.31) with biomarker protein (mean = 74.9 g). DLW-TEE–corrected self-reported protein intake (mean = 90.7 g) had the strongest correlation with biomarker protein (r = 0.47). Other energy corrections yielded lower, but still significant correlations: EER, r = 0.44 (mean = 92.1 g); WHI-NBS-TEE, r = 0.37 (mean = 90.4 g); Goldberg cutoff, r = 0.36 (mean = 88.4 g); and residual method, r = 0.35 (mean = 66.7 g). Conclusions Our data indicate that proportional correction of reported protein intake using a measure of energy requirement from DLW-TEE or IOM-EER performed modestly better than other methods in this cohort. These energy adjustments, however, yielded corrected protein exceeding the biomarker protein, indicating that energy adjustment alone does not eliminate all self-reported protein reporting bias.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2383 ◽  
Author(s):  
Shaw ◽  
Leung ◽  
Jong ◽  
Coates ◽  
Davis ◽  
...  

There is evidence to indicate that the central biological clock (i.e., our endogenous circadian system) plays a role in physiological processes in the body that impact energy regulation and metabolism. Cross-sectional data suggest that energy consumption later in the day and during the night is associated with weight gain. These findings have led to speculation that when, as well as what, we eat may be important for maintaining energy balance. Emerging literature suggests that prioritising energy intake to earlier during the day may help with body weight maintenance. Evidence from tightly controlled acute experimental studies indicates a disparity in the body’s ability to utilise (expend) energy equally across the day and night. Energy expenditure both at rest (resting metabolic rate) and after eating (thermic effect of food) is typically more efficient earlier during the day. In this review, we discuss the key evidence for a circadian pattern in energy utilisation and balance, which depends on meal timing. Whilst there is limited evidence that simply prioritising energy intake to earlier in the day is an effective strategy for weight loss, we highlight the potential benefits of considering the role of meal timing for improving metabolic health and energy balance. This review demonstrates that to advance our understanding of the contribution of the endogenous circadian system toward energy balance, targeted studies that utilise appropriate methodologies are required that focus on meal timing and frequency.


1995 ◽  
Vol 74 (4) ◽  
pp. 557-567 ◽  
Author(s):  
Klaus Nielsen ◽  
Jens Kondrup ◽  
Lars Martinsen ◽  
Henrik Døssing ◽  
Benny Larsson ◽  
...  

A previous study has shown that malnourished, clinically stable patients with liver cirrhosis are in protein and energy balance at their spontaneous dietary intake and that an improvement in nutritional status cannot be anticipated at this intake (Nielsen et al. 1993). In the present study we examined to what extent oral intake could be increased by nutritional support, and to what extent dietary protein would be retained with increased intake. The techniques used for balance studies were also validated since this information is not available for patients with liver cirrhosis. Fifteen malnourished patients with alcoholic liver cirrhosis were given increasing amounts of a balanced ordinary diet for 38 (SE 3) d. Intakes of protein and energy were recorded by weighing servings and leftovers on food trays. Protein intake was calculated from food tables. Total N disposal was calculated after measurement of urinary N excretion, and protein balance was calculated from the N balance. A validation study of protein balance in a subgroup of patients (analysis of N in food by the duplicate portion technique, correction for incomplete recovery of urine by measurement of urinary para-aminobenzoic acid (PABA) after administration of PABA tablets, and measurement of faecal N) did not change protein balance values. Protein intake increased from 1. 0 (SE 0.1) g/kg per d to 1·8 (SE 0·1)g/kg per d. With increasing protein intake, 84 (SE 8)% of the increase in intake was retained. The rate of protein retention was not saturated at the intakes obtained in this study. Protein intolerance was only encountered in one patient. Available evidence indicates that the requirement for achieving N balance is increased in these patients but protein retention is highly efficient with increased intake. Protein retention is dependent on energy balance. Energy intake was calculated from food tables and total energy expenditure was calculated by the factorial method. A validation study was performed in a subgroup of patients. The energy contents of food sampled by the duplicate portion technique, and of urine and faeces were measured by bomb calorimetry. Resting energy expenditure (REE) was measured by indirect calorimetry before and at the end of the study, and O2 uptake during bicycle exercise was measured before and at the end of the study. The measured intake of metabolizable energy was on average 13% lower than the value given in food tables. Calculated energy expenditure was not changed by the validation study. Mean energy intake was 163 (SE 10) kJ/kg per d and mean energy expenditure was 134 (SE 5) kJ/kg per d (P = 0·007), indicating that the protein retention described occurred at a positive energy balance. It is concluded that a substantial retention of dietary protein can be obtained by oral nutrition support over a prolonged period of time in patients with liver cirrhosis. Requirements of protein for maintenance and repletion in these patients are discussed.


2003 ◽  
Vol 89 (4) ◽  
pp. 533-537 ◽  
Author(s):  
Jacqueline Bauer ◽  
Kathrin Maier ◽  
Gerald Hellstern ◽  
Otwin Linderkamp

The aim of the present study was to obtain serial values of O2 consumption (VO2), CO2 production (VCO2) and energy expenditure (EE) in healthy but extremely-low-birth-weight infants (birth weight <1000 g), during the first 5 weeks after birth. A total of seventeen spontaneously breathing and appropriate-for-gestational-age (birth weight and body length above the 10th and below the 90th percentile) preterm infants with gestational age 25–28 weeks and birth weight 590–990 g were enrolled in the study. Calorimetry was performed using an open-circuit calorimeter on days 6, 12, 18, 24, 30 and 36 of postnatal life. During the 5 weeks of observation, VO2 increased from 4·7 (SD 0·5) TO 9·1 (sd 1·0) ml/kg per min, VCO2 from 4·5 (sd 0·4) to 8·3 (SD 0·6) ml/kg per min and EE from 115 (sd 12) to 310 (sd 71) kJ/kg per d. The energy intake was always higher than EE, even at days 6 and 12. The RER decreased from 0·99 (sd 0·09) at day 12 to 0·91 (SD 0·05) at day 30. On all study days, there were highly significant positive correlations between energy intake and weight gain, EE and weight gain, and EE and energy intake (P<0·05). Multiple regression analysis showed that on most study days EE was more affected by energy intake than by weight gain. We conclude that in healthy preterm infants with birth weight <1000 g, EE increases by about 150 % in the first 5 weeks after birth, and that the EE values are related to energy intake and weight gain independent of postnatal age.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 503-503
Author(s):  
Zhiji Huang ◽  
Yafang Ma ◽  
Chunbao Li

Abstract Objectives Kappa-Carrageenan(CGN) is a widely used food additive in the meat industry and a highly viscous soluble dietary fiber which can hardly be fermented. It has been shown to be able to regulate the energy metabolism and inhibit diet-induced obesity. However, the mechanism is not well understood. The purpose of this study is to investigate the mechanisms of κ-carrageenan to inhibit the body weight gain. Methods A high-fat diet incorporated with lard, pork protein and CGN (2% or 4%, w/w) was given to C57BL/6J mice for 90 days. The energy intake and weight changes were measured every three days. After the dietary intervention, mice were sacrificed, liver and epididymal adipose tissues were taken for real-time polymerase chain reaction (RT-qPCR) analysis. Results The CGN in the high-fat diet restricted weight gain by decreasing liver and adipose mass without inhibiting energy intake.  The genes involving energy expenditure such as Acox1, Acadl, CPT-1A and Sirt1 were upregulated in the mice fed with carrageenan. However, the genes responsible for lipid synthesis were not significantly different compared to the diet-induced obese model. Conclusions The anti-obesity effect of the CGN in high-fat diet could be highly related to the enhancement of energy expenditure through up-regulating the downstream genes which promote β-oxidation by increasing the Sirt1 gene expression in liver. Funding Sources Ministry of Science and Technology of the People's Republic of China (10000 Talent Project)


Sign in / Sign up

Export Citation Format

Share Document