scholarly journals Enhancement of the Anti-Angiogenic Effects of Delphinidin When Encapsulated within Small Extracellular Vesicles

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4378
Author(s):  
Merwan Barkallah ◽  
Judith Nzoughet-Kouassi ◽  
Gilles Simard ◽  
Loric Thoulouze ◽  
Sébastien Marze ◽  
...  

(1) Background: The anthocyanin delphinidin exhibits anti-angiogenic properties both in in vitro and in vivo angiogenesis models. However, in vivo delphinidin is poorly absorbed, thus its modest bioavailability and stability reduce its anti-angiogenic effects. The present work takes advantage of small extracellular vesicle (sEV) properties to enhance both the stability and efficacy of delphinidin. When encapsulated in sEVs, delphinidin inhibits the different stages of angiogenesis on human aortic endothelial cells (HAoECs). (2) Methods: sEVs from immature dendritic cells were produced and loaded with delphinidin. A method based on UHPLC-HRMS was implemented to assess delphinidin metabolites within sEVs. Proliferation assay, nitric oxide (NO) production and Matrigel assay were evaluated in HAoECs. (3) Results: Delphinidine, 3-O-β-rutinoside and Peonidin-3-galactoside were found both in delphinidin and delphinidin-loaded sEVs. sEV-loaded delphinidin increased the potency of free delphinidin 2-fold for endothelial proliferation, 10-fold for endothelial NO production and 100-fold for capillary-like formation. Thus, sEV-loaded delphinidin exerts effects on the different steps of angiogenesis. (4) Conclusions: sEVs may be considered as a promising approach to deliver delphinidin to target angiogenesis-related diseases, including cancer and pathologies associated with excess vascularization.

1992 ◽  
Vol 262 (4) ◽  
pp. H1088-H1095 ◽  
Author(s):  
H. W. Farber ◽  
A. S. Antonov ◽  
Y. A. Romanov ◽  
V. N. Smirnov ◽  
L. M. Scarfo ◽  
...  

We have previously described a 13- to 15-kDa T-lymphocyte-specific chemotactic protein (endothelial cell-derived lymphocyte chemoattractant activity, ED-LCA) secreted by serotonin-stimulated bovine aortic endothelial cells. In the current study, we have identified a similar serotonin-induced chemotaxin secreted by human aortic endothelial cells (HAEC). Like the bovine ED-LCA, secretion of this human T-cell chemotaxin peaked at 10(-5) M serotonin, was blocked by 5-HT2-receptor antagonists, and was not induced by other vasoactive amines, such as histamine or angiotensin II. In addition, human ED-LCA had no effect on neutrophil or monocyte migration. Using HAEC and human pulmonary arterial endothelial cells (HPAEC) from the same individual, we found that serotonin-stimulated HAEC, but not HPAEC, secreted ED-LCA. Because human vascular endothelium affected by atherosclerosis is morphologically, ultrastructurally, and phenotypically distinct from unaffected areas, we evaluated the secretion of this cytokine from cultured HAEC derived from areas of aorta differentially affected by atherosclerosis. We found that the degree of atherosclerotic involvement of an individual vessel was associated with a decrease in the uptake of serotonin and a reduction in serotonin-induced ED-LCA secretion. In response to serotonin, HAEC derived from atherosclerotic plaques did not secrete ED-LCA, whereas HAEC derived from fatty streaks secreted lesser amounts of ED-LCA than HAEC derived from normal areas. These studies demonstrate that in vivo morphological heterogeneity of HAEC is maintained in vitro and is associated with alterations in function, as measured by cytokine secretion.


Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 817
Author(s):  
Mehreen Ishfaq ◽  
Timothy Pham ◽  
Cooper Beaman ◽  
Pablo Tamayo ◽  
Alice L. Yu ◽  
...  

MDSCs are immune cells of myeloid lineage that plays a key role in promoting tumor growth. The expansion of MDSCs in tumor-bearing hosts reduces the efficacy of checkpoint inhibitors and CAR-T therapies, and hence strategies that deplete or block the recruitment of MDSCs have shown benefit in improving responses to immunotherapy in various cancers, including NB. Ibrutinib, an irreversible molecular inhibitor of BTK, has been widely studied in B cell malignancies, and recently, this drug is repurposed for the treatment of solid tumors. Herein we report that BTK is highly expressed in both granulocytic and monocytic murine MDSCs isolated from mice bearing NB tumors, and its increased expression correlates with a poor relapse-free survival probability of NB patients. Moreover, in vitro treatment of murine MDSCs with ibrutinib altered NO production, decreased mRNA expression of Ido, Arg, Tgfβ, and displayed defects in T-cell suppression. Consistent with these findings, in vivo inhibition of BTK with ibrutinib resulted in reduced MDSC-mediated immune suppression, increased CD8+ T cell infiltration, decreased tumor growth, and improved response to anti-PDL1 checkpoint inhibitor therapy in a murine model of NB. These results demonstrate that ibrutinib modulates immunosuppressive functions of MDSC and can be used either alone or in combination with immunotherapy for augmenting antitumor immune responses in NB.


2018 ◽  
Vol 60 (No. 8) ◽  
pp. 359-366
Author(s):  
J. Li ◽  
B. Shi ◽  
S. Yan ◽  
L. Jin ◽  
Y. Guo ◽  
...  

The effects of chitosan on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity and gene expression in vivo or vitro were investigated in weaned piglets. In vivo, 180 weaned piglets were assigned to five dietary treatments with six replicates. The piglets were fed on a basal diet supplemented with 0 (control), 100, 500, 1000, and 2000 mg chitosan/kg feed, respectively. In vitro, the peripheral blood mononuclear cells (PBMCs) from a weaned piglet were cultured respectively with 0 (control), 40, 80, 160, and 320 µg chitosan/ml medium. Results showed that serum NO concentrations on days 14 and 28 and iNOS activity on day 28 were quadratically improved with increasing chitosan dose (P < 0.05). The iNOS mRNA expressions were linearly or quadratically enhanced in the duodenum on day 28, and were improved quadratically in the jejunum on days 14 and 28 and in the ileum on day 28 (P < 0.01). In vitro, the NO concentrations, iNOS activity, and mRNA expression in unstimulated PBMCs were quadratically enhanced by chitosan, but the improvement of NO concentrations and iNOS activity by chitosan were markedly inhibited by N-(3-[aminomethyl] benzyl) acetamidine (1400w) (P < 0.05). Moreover, the increase of NO concentrations, iNOS activity, and mRNA expression in PBMCs induced by lipopolysaccharide (LPS) were suppressed significantly by chitosan (P < 0.05). The results indicated that the NO concentrations, iNOS activity, and mRNA expression in piglets were increased by feeding chitosan in a dose-dependent manner. In addition, chitosan improved the NO production in unstimulated PBMCs but inhibited its production in LPS-induced cells, which exerted bidirectional regulatory effects on the NO production via modulated iNOS activity and mRNA expression.


Author(s):  
Xudong Zhang ◽  
Anis Nurashikin Nordin ◽  
Fang Li ◽  
Ioana Voiculescu

This paper presents the fabrication and testing of electric cell-substrate impedance spectroscopy (ECIS) electrodes on a stretchable membrane. This is the first time when ECIS electrodes were fabricated on a stretchable substrate and ECIS measurements on mammalian cells exposed to cyclic strain of 10% were successfully demonstrated. A chemical was used to form strong chemical bond between gold electrodes of ECIS sensor and polymer membrane, which enable the electrodes keep good conductive ability during cyclic stretch. The stretchable membrane integrated with the ECIS sensor can simulate and replicate the dynamic environment of organism and enable the analysis of the cells activity involved in cells attachment and proliferation in vitro. Bovine aortic endothelial cells (BAEC) were used to evaluate the endothelial function influenced by mechanical stimuli in this research because they undergo in vivo cyclic physiologic elongation produced by the blood circulation in the arteries.


Sign in / Sign up

Export Citation Format

Share Document