scholarly journals Rice Bran Protein Hydrolysates Improve Insulin Resistance and Decrease Pro-inflammatory Cytokine Gene Expression in Rats Fed a High Carbohydrate-High Fat Diet

Nutrients ◽  
2015 ◽  
Vol 7 (8) ◽  
pp. 6313-6329 ◽  
Author(s):  
Kampeebhorn Boonloh ◽  
Veerapol Kukongviriyapan ◽  
Bunkerd Kongyingyoes ◽  
Upa Kukongviriyapan ◽  
Supawan Thawornchinsombut ◽  
...  
2008 ◽  
Vol 19 (8) ◽  
pp. 505-513 ◽  
Author(s):  
Anne M. Flanagan ◽  
Jackie L. Brown ◽  
Consuelo A. Santiago ◽  
Pauline Y. Aad ◽  
Leon J. Spicer ◽  
...  

Author(s):  
Jiraprapa Ponglong ◽  
Laddawan Senggunprai ◽  
Panot Tungsutjarit ◽  
Ronnachai Changsri ◽  
Tunvaraporn Proongkhong ◽  
...  

Objective: Tubtim-chumphae rice is hybrid Thai rice with a red pericarp. This study was aimed to investigate the effect of Tubtim-chumphae rice bran on insulin resistance and intrahepatic fat accumulation in high-fat-high-fructose diet (HFFD) fed rats.Methods: Ethanolic extract of rice bran (ERB) was prepared using a 50% ethanol-water. Male Sprague-Dawley rats were fed HFFD (40% lard, 20% fructose) for 10 weeks, followed by concomitant administrations of distilled water or ERB at 250 or 500 mg/kg/day or pioglitazone at 10 mg/kg/day for a further 4 weeks in treated groups. Normal control rats were fed normal chow and distilled water. At the end of all treatments, fasting blood glucose (FBG), an oral glucose tolerance test (OGTT), serum insulin levels, lipid profiles, and liver fat contents were measured. Liver histological and peroxisome proliferator-activated receptor-α (PPAR-α) gene expression examinations were performed.Results: At week 14, control HFFD rats had significantly (p<0.05) higher FBG, low-density lipoprotein cholesterol, triglycerides, and insulin secretions together with impaired OGTT as compared to normal control rats. These parameters indicated an insulin resistant and dyslipidemic condition in HFFD rats. ERB 250 and 500 mg/kg or pioglitazone 10 mg/kg significantly ameliorated all of these changes. HFFD also caused a significant increase in fat accumulation and a decrease in PPAR-α gene expression in the livers which were significantly decreased by ERB.Conclusions: ERB decreases insulin resistance and intrahepatic fat accumulation possibly through increasing PPAR-α gene expression in HFFD rats. ERB might possibly be a neutraceutical for the metabolic syndrome patients.1. Gauthier MS, Favier R, Lavoie JM. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 2006;95:273-81.2. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr Physiol 2013;3:1-58.3. Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med 2016;26:364-73.4. Fouret G, Gaillet S, Lecomte J, Bonafos B, Djohan F, Barea B, et al. 20-week follow-up of hepatic steatosis installation and liver mitochondrial structure and activity and their interrelation in rats fed a high-fat-high-fructose diet. Br J Nutr 2018;119:368-80.5. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010;299:E685-94.6. Vichit W, Saewan N. Antioxidant activities and cytotoxicity of thai pigmented rice. Int J Pharm Pharm Sci 2015;7:329-34.7. Settharaksa S, Madaka F, Charkree K, Charoenchai L. The study of anti-inflammatory and antioxidant activity in cold press rice bran oil from rice in Thailand. Int J Pharm Pharm Sci 2014;6:428-31.8. Sukrasno S, Tuty S, Fidrianny I. Antioxidant evaluation and phytochemical content of various rice bran extracts of three varieties rice from Semarang, central Java, Indonesia. Asian J Pharm Clin Res 2017;10:377-82.9. Sabir A, Rafi M, Darusman LK. Discrimination of red and white rice bran from indonesia using HPLC fingerprint analysis combined with chemometrics. Food Chem 2017;221:1717-22.10. Niu Y, Gao B, Slavin M, Zhang X, Yang F, Bao J, et al. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT Food Sci Technol 2013;54:521-7.11. Boonloh K, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Pannangpetch P, et al. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients 2015;7:6313-29.12. Peñarrieta JM, Alvarado JA, Akesson B, Bergenståhl B. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An andean pseudocereal. Mol Nutr Food Res 2008;52:708-17.13. Mungkhunthod S, Senggunprai L, Tangsucharit P, Sripui J, Kukongviriyapan U, Pannangpetch P. Antidesma thwaitesianum pomace extract improves insulin sensitivity via upregulation of PPAR-γ in high fat diet/streptozotocin-induced Type 2 diabetic rats. Asia Pac J Sci Technol 2016;21:63-76.14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.15. Naowaboot J, Wannasiri S. Anti-lipogenic effect of Senna alata leaf extract in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 2016;6:232-8.16. Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, et al. Cinnamon increases liver glycogen in an animal model of insulin


2009 ◽  
Vol 57 (23) ◽  
pp. 11100-11105 ◽  
Author(s):  
Yoichi Fukushima ◽  
Masato Kasuga ◽  
Kazuwa Nakao ◽  
Iichiro Shimomura ◽  
Yuji Matsuzawa

Author(s):  
Jiraprapa Ponglong ◽  
Laddawan Senggunprai ◽  
Panot Tungsutjarit ◽  
Ronnachai Changsri ◽  
Tunvaraporn Proongkhong ◽  
...  

Objective: Tubtim-chumphae rice is hybrid Thai rice with a red pericarp. This study was aimed to investigate the effect of Tubtim-chumphae rice bran on insulin resistance and intrahepatic fat accumulation in high-fat-high-fructose diet (HFFD) fed rats.Methods: Ethanolic extract of rice bran (ERB) was prepared using a 50% ethanol-water. Male Sprague-Dawley rats were fed HFFD (40% lard, 20% fructose) for 10 weeks, followed by concomitant administrations of distilled water or ERB at 250 or 500 mg/kg/day or pioglitazone at 10 mg/kg/day for a further 4 weeks in treated groups. Normal control rats were fed normal chow and distilled water. At the end of all treatments, fasting blood glucose (FBG), an oral glucose tolerance test (OGTT), serum insulin levels, lipid profiles, and liver fat contents were measured. Liver histological and peroxisome proliferator-activated receptor-α (PPAR-α) gene expression examinations were performed.Results: At week 14, control HFFD rats had significantly (p<0.05) higher FBG, low-density lipoprotein cholesterol, triglycerides, and insulin secretions together with impaired OGTT as compared to normal control rats. These parameters indicated an insulin resistant and dyslipidemic condition in HFFD rats. ERB 250 and 500 mg/kg or pioglitazone 10 mg/kg significantly ameliorated all of these changes. HFFD also caused a significant increase in fat accumulation and a decrease in PPAR-α gene expression in the livers which were significantly decreased by ERB.Conclusions: ERB decreases insulin resistance and intrahepatic fat accumulation possibly through increasing PPAR-α gene expression in HFFD rats. ERB might possibly be a neutraceutical for the metabolic syndrome patients.1. Gauthier MS, Favier R, Lavoie JM. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 2006;95:273-81.2. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr Physiol 2013;3:1-58.3. Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med 2016;26:364-73.4. Fouret G, Gaillet S, Lecomte J, Bonafos B, Djohan F, Barea B, et al. 20-week follow-up of hepatic steatosis installation and liver mitochondrial structure and activity and their interrelation in rats fed a high-fat-high-fructose diet. Br J Nutr 2018;119:368-80.5. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010;299:E685-94.6. Vichit W, Saewan N. Antioxidant activities and cytotoxicity of thai pigmented rice. Int J Pharm Pharm Sci 2015;7:329-34.7. Settharaksa S, Madaka F, Charkree K, Charoenchai L. The study of anti-inflammatory and antioxidant activity in cold press rice bran oil from rice in Thailand. Int J Pharm Pharm Sci 2014;6:428-31.8. Sukrasno S, Tuty S, Fidrianny I. Antioxidant evaluation and phytochemical content of various rice bran extracts of three varieties rice from Semarang, central Java, Indonesia. Asian J Pharm Clin Res 2017;10:377-82.9. Sabir A, Rafi M, Darusman LK. Discrimination of red and white rice bran from indonesia using HPLC fingerprint analysis combined with chemometrics. Food Chem 2017;221:1717-22.10. Niu Y, Gao B, Slavin M, Zhang X, Yang F, Bao J, et al. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT Food Sci Technol 2013;54:521-7.11. Boonloh K, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Pannangpetch P, et al. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients 2015;7:6313-29.12. Peñarrieta JM, Alvarado JA, Akesson B, Bergenståhl B. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An andean pseudocereal. Mol Nutr Food Res 2008;52:708-17.13. Mungkhunthod S, Senggunprai L, Tangsucharit P, Sripui J, Kukongviriyapan U, Pannangpetch P. Antidesma thwaitesianum pomace extract improves insulin sensitivity via upregulation of PPAR-γ in high fat diet/streptozotocin-induced Type 2 diabetic rats. Asia Pac J Sci Technol 2016;21:63-76.14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.15. Naowaboot J, Wannasiri S. Anti-lipogenic effect of Senna alata leaf extract in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 2016;6:232-8.16. Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, et al. Cinnamon increases liver glycogen in an animal model of insulin


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rieko Takanabe ◽  
Koh Ono ◽  
Tomohide Takaya ◽  
Takahiro Horie ◽  
Hiromichi Wada ◽  
...  

Obesity is the result of an expansion and increase in the number of individual adipocytes. Since changes in gene expression during adipocyte differentiation and hypertrophy are closely associated with insulin resistance and cardiovascular diseases, further insight into the molecular basis of obesity is needed to better understand obesity-associated diseases. MicroRNAs (miRNAs) are approximately 17–24nt single stranded RNA, that post-transcriptionally regulate gene expression. MiRNAs control cell growth, differentiation and metabolism, and may be also involved in pathogenesis and pathophysiology of diseases. It has been proposed that miR-143 plays a role in the differentiation of preadipocytes into mature adipocytes in culture. However, regulated expression of miR-143 in the adult adipose tissue during the development of obesity in vivo is unknown. To solve this problem, C57BL/6 mice were fed with either high-fat diet (HFD) or normal chow (NC). Eight weeks later, severe insulin resistance was observed in mice on HFD. Body weight increased by 35% and the mesenteric fat weight increased by 3.3-fold in HFD mice compared with NC mice. We measured expression levels of miR-143 in the mesenteric fat tissue by real-time PCR and normalized with those of 5S ribosomal RNA. Expression of miR-143 in the mesenteric fat was significantly up-regulated (3.3-fold, p<0.05) in HFD mice compared to NC mice. MiR-143 expression levels were positively correlated with body weight (R=0.577, p=0.0011) and the mesenteric fat weight (R=0.608, p=0.0005). We also measured expression levels in the mesenteric fat of PPARγ and AP2, whose expression are deeply involved in the development of obesity, insulin resistant and arteriosclerosis. The expression levels of miR-143 were closely correlated with those of PPARγ (R=0.600, p=0.0040) and AP2 (R=0.630, p=0.0022). These findings provide the first evidence for up-regulated expression of miR-143 in the mesenteric fat of HFD-induced obese mice, which might contribute to regulated expression of genes involved in the pathophysiology of obesity.


2020 ◽  
Vol 318 (4) ◽  
pp. E492-E503
Author(s):  
Kenichi Tanaka ◽  
Hirokazu Takahashi ◽  
Sayaka Katagiri ◽  
Kazuyo Sasaki ◽  
Yujin Ohsugi ◽  
...  

Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been reported to improve obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) in addition to exercise training, whereas the combined effects remain to be elucidated fully. We investigated the effect of the combination of the SGLT2i canagliflozin (CAN) and exercise training in high-fat diet-induced obese mice. High-fat diet-fed mice were housed in normal cages (sedentary; Sed) or wheel cages (WCR) with or without CAN (0.03% of diet) for 4 wk. The effects on obesity, glucose metabolism, and hepatic steatosis were evaluated in four groups (Control/Sed, Control/WCR, CAN/Sed, and CAN/WCR). Numerically additive improvements were found in body weight, body fat mass, blood glucose, glucose intolerance, insulin resistance, and the fatty liver of the CAN/WCR group, whereas CAN increased food intake and reduced running distance. Exercise training alone, CAN alone, or both did not change the weight of skeletal muscle, but microarray analysis showed that each resulted in a characteristic change of gene expression in gastrocnemius muscle. In particular, in the CAN/WCR group, there was acceleration of the angiogenesis pathway and suppression of the adipogenesis pathway compared with the CAN/Sed group. In conclusion, the combination of an SGLT2i and exercise training improves obesity, insulin resistance, and NAFLD in an additive manner. Changes of gene expression in skeletal muscle may contribute, at least in part, to the improvement of obesity and insulin sensitivity.


Author(s):  
Alexandra A. DeLaney ◽  
Corbett T. Berry ◽  
David A. Christian ◽  
Andrew Hart ◽  
Elisabet Bjanes ◽  
...  

Caspase-8 is a key integrator of cell survival and cell death decisions during infection and inflammation. Following engagement of tumor necrosis factor superfamily receptors or certain Toll-like receptors (TLRs), caspase-8 initiates cell-extrinsic apoptosis while inhibiting RIPK3-dependent programmed necrosis. In addition, caspase-8 has an important, albeit less well understood, role in cell-intrinsic inflammatory gene expression. Macrophages lacking caspase-8 or the adaptor FADD have defective inflammatory cytokine expression and inflammasome priming in response to bacterial infection or TLR stimulation. How caspase-8 regulates cytokine gene expression, and whether caspase-8–mediated gene regulation has a physiological role during infection, remain poorly defined. Here we demonstrate that both caspase-8 enzymatic activity and scaffolding functions contribute to inflammatory cytokine gene expression. Caspase-8 enzymatic activity was necessary for maximal expression ofIl1bandIl12b, but caspase-8 deficient cells exhibited a further decrease in expression of these genes. Furthermore, the ability of TLR stimuli to induce optimal IκB kinase phosphorylation and nuclear translocation of the nuclear factor kappa light chain enhancer of activated B cells family member c-Rel required caspase activity. Interestingly, overexpression of c-Rel was sufficient to restore expression of IL-12 and IL-1β in caspase-8–deficient cells. Moreover,Ripk3−/−Casp8−/−mice were unable to control infection by the intracellular parasiteToxoplasma gondii, which corresponded to defects in monocyte recruitment to the peritoneal cavity, and exogenous IL-12 restored monocyte recruitment and protection of caspase-8–deficient mice during acute toxoplasmosis. These findings provide insight into how caspase-8 controls inflammatory gene expression and identify a critical role for caspase-8 in host defense against eukaryotic pathogens.


2005 ◽  
Vol 42 (5) ◽  
pp. 579-588 ◽  
Author(s):  
S. Tanaka ◽  
M. Sato ◽  
T. Onitsuka ◽  
H. Kamata ◽  
Y. Yokomizo

The granulomatous lesions in bovine paratuberculosis have been classified into two types, i.e., the lepromatous type and the tuberculoid type. To clarify the immunopathologic mechanisms at the site of infection, we compared inflammatory cytokine gene expression between the two types of lesions. Samples were obtained from noninfected control cows ( n =5) and naturally infected cows ( n =7) that were diagnosed by enzyme-linked immunosorbent assay (ELISA) and fecal culture test. Although none of the infected cows showed clinical signs, tuberculoid lesions were observed in five cows (tuberculoid group) and lepromatous lesions in two cows (lepromatous group). Among the cytokines examined by reverse transcription-polymerase chain reaction (RT-PCR), Th2-type cytokines interleukin-4 (IL-4) and IL-10, and Th1-type cytokine IL-2 were expressed more significantly in the lepromatous group than in the tuberculoid ( P < 0.01) and noninfected groups ( P < 0.05). No statistical differences were observed in the expression of interferon-gamma, IL-1 beta, TNF-alpha, and GM-CSF among lepromatous, tuberculoid, and noninfected groups. Expression of proinflammatory cytokine IL-12 mRNA, however, did not differ among the three groups; IL-18 was expressed at lower levels in the lepromatous group than in the tuberculoid group and the noninfected group ( P < 0.0001). Moreover, the number of cells in which IL-18 mRNAs were detected by in situ hybridization was markedly decreased in the lepromatous group. These results indicate that the formation of lepromatous-type lesions or tuberculoid-type lesions may be influenced by alterations in Th1/Th2-type cytokine production and that IL-18 may play an important role in a Th1-to-Th2 switch in paratuberculosis.


Sign in / Sign up

Export Citation Format

Share Document