Effects of Coffee on Inflammatory Cytokine Gene Expression in Mice Fed High-Fat Diets

2009 ◽  
Vol 57 (23) ◽  
pp. 11100-11105 ◽  
Author(s):  
Yoichi Fukushima ◽  
Masato Kasuga ◽  
Kazuwa Nakao ◽  
Iichiro Shimomura ◽  
Yuji Matsuzawa
2008 ◽  
Vol 19 (8) ◽  
pp. 505-513 ◽  
Author(s):  
Anne M. Flanagan ◽  
Jackie L. Brown ◽  
Consuelo A. Santiago ◽  
Pauline Y. Aad ◽  
Leon J. Spicer ◽  
...  

Nutrients ◽  
2015 ◽  
Vol 7 (8) ◽  
pp. 6313-6329 ◽  
Author(s):  
Kampeebhorn Boonloh ◽  
Veerapol Kukongviriyapan ◽  
Bunkerd Kongyingyoes ◽  
Upa Kukongviriyapan ◽  
Supawan Thawornchinsombut ◽  
...  

2019 ◽  
Vol 20 (13) ◽  
pp. 3229 ◽  
Author(s):  
Moody ◽  
Wang ◽  
Jung ◽  
Chen ◽  
Pan

Calorie-dense high-fat diets (HF) are associated with detrimental health outcomes, including obesity, cardiovascular disease, and diabetes. Both pre- and post-natal HF diets have been hypothesized to negatively impact long-term metabolic health via epigenetic mechanisms. To understand how the timing of HF diet intake impacts DNA methylation and metabolism, male Sprague–Dawley rats were exposed to either maternal HF (MHF) or post-weaning HF diet (PHF). At post-natal week 12, PHF rats had similar body weights but greater hepatic lipid accumulation compared to the MHF rats. Genome-wide DNA methylation was evaluated, and analysis revealed 1744 differentially methylation regions (DMRs) between the groups with the majority of the DMR located outside of gene-coding regions. Within differentially methylated genes (DMGs), intragenic DNA methylation closer to the transcription start site was associated with lower gene expression, whereas DNA methylation further downstream was positively correlated with gene expression. The insulin and phosphatidylinositol (PI) signaling pathways were enriched with 25 DMRs that were associated with 20 DMGs, including PI3 kinase (Pi3k), pyruvate kinase (Pklr), and phosphodiesterase 3 (Pde3). Together, these results suggest that the timing of HF diet intake determines DNA methylation and gene expression patterns in hepatic metabolic pathways that target specific genomic contexts.


Author(s):  
Alexandra A. DeLaney ◽  
Corbett T. Berry ◽  
David A. Christian ◽  
Andrew Hart ◽  
Elisabet Bjanes ◽  
...  

Caspase-8 is a key integrator of cell survival and cell death decisions during infection and inflammation. Following engagement of tumor necrosis factor superfamily receptors or certain Toll-like receptors (TLRs), caspase-8 initiates cell-extrinsic apoptosis while inhibiting RIPK3-dependent programmed necrosis. In addition, caspase-8 has an important, albeit less well understood, role in cell-intrinsic inflammatory gene expression. Macrophages lacking caspase-8 or the adaptor FADD have defective inflammatory cytokine expression and inflammasome priming in response to bacterial infection or TLR stimulation. How caspase-8 regulates cytokine gene expression, and whether caspase-8–mediated gene regulation has a physiological role during infection, remain poorly defined. Here we demonstrate that both caspase-8 enzymatic activity and scaffolding functions contribute to inflammatory cytokine gene expression. Caspase-8 enzymatic activity was necessary for maximal expression ofIl1bandIl12b, but caspase-8 deficient cells exhibited a further decrease in expression of these genes. Furthermore, the ability of TLR stimuli to induce optimal IκB kinase phosphorylation and nuclear translocation of the nuclear factor kappa light chain enhancer of activated B cells family member c-Rel required caspase activity. Interestingly, overexpression of c-Rel was sufficient to restore expression of IL-12 and IL-1β in caspase-8–deficient cells. Moreover,Ripk3−/−Casp8−/−mice were unable to control infection by the intracellular parasiteToxoplasma gondii, which corresponded to defects in monocyte recruitment to the peritoneal cavity, and exogenous IL-12 restored monocyte recruitment and protection of caspase-8–deficient mice during acute toxoplasmosis. These findings provide insight into how caspase-8 controls inflammatory gene expression and identify a critical role for caspase-8 in host defense against eukaryotic pathogens.


2005 ◽  
Vol 42 (5) ◽  
pp. 579-588 ◽  
Author(s):  
S. Tanaka ◽  
M. Sato ◽  
T. Onitsuka ◽  
H. Kamata ◽  
Y. Yokomizo

The granulomatous lesions in bovine paratuberculosis have been classified into two types, i.e., the lepromatous type and the tuberculoid type. To clarify the immunopathologic mechanisms at the site of infection, we compared inflammatory cytokine gene expression between the two types of lesions. Samples were obtained from noninfected control cows ( n =5) and naturally infected cows ( n =7) that were diagnosed by enzyme-linked immunosorbent assay (ELISA) and fecal culture test. Although none of the infected cows showed clinical signs, tuberculoid lesions were observed in five cows (tuberculoid group) and lepromatous lesions in two cows (lepromatous group). Among the cytokines examined by reverse transcription-polymerase chain reaction (RT-PCR), Th2-type cytokines interleukin-4 (IL-4) and IL-10, and Th1-type cytokine IL-2 were expressed more significantly in the lepromatous group than in the tuberculoid ( P < 0.01) and noninfected groups ( P < 0.05). No statistical differences were observed in the expression of interferon-gamma, IL-1 beta, TNF-alpha, and GM-CSF among lepromatous, tuberculoid, and noninfected groups. Expression of proinflammatory cytokine IL-12 mRNA, however, did not differ among the three groups; IL-18 was expressed at lower levels in the lepromatous group than in the tuberculoid group and the noninfected group ( P < 0.0001). Moreover, the number of cells in which IL-18 mRNAs were detected by in situ hybridization was markedly decreased in the lepromatous group. These results indicate that the formation of lepromatous-type lesions or tuberculoid-type lesions may be influenced by alterations in Th1/Th2-type cytokine production and that IL-18 may play an important role in a Th1-to-Th2 switch in paratuberculosis.


2015 ◽  
Vol 39 (11) ◽  
pp. 1619-1629 ◽  
Author(s):  
E García-Ruiz ◽  
B Reynés ◽  
R Díaz-Rúa ◽  
E Ceresi ◽  
P Oliver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document