scholarly journals Properties and Composition of Magnetized Nuclei

Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 272-277
Author(s):  
V.N. Kondratyev

The properties and mass distribution of the ultramagnetized atomic nuclei which arise in heavy-ion collisions and magnetar crusts, during Type II supernova explosions and neutron star mergers are analyzed. For the magnetic field strength range of 0.1–10 teratesla, the Zeeman effect leads to a linear nuclear magnetic response that can be described in terms of magnetic susceptibility. Binding energies increase for open shell and decrease for closed shell nuclei. A noticeable enhancement in theyield of corresponding explosive nucleosynthesis products with antimagic numbers is predicted for iron group and r-process nuclei. Magnetic enrichment in a sampleof 44Ti corroborate theobservational results and imply a significant increase in the quantity of the main titanium isotope, 48Ti, in the chemical composition of galaxies. The enhancement of small mass number nuclides in the r-process peak may be due to magnetic effects.

Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 320-335
Author(s):  
Peter Senger

The future “Facility for Antiproton and Ion Research” (FAIR) is an accelerator-based international center for fundamental and applied research, which presently is under construction in Darmstadt, Germany. An important part of the program is devoted to questions related to astrophysics, including the origin of elements in the universe and the properties of strongly interacting matter under extreme conditions, which are relevant for our understanding of the structure of neutron stars and the dynamics of supernova explosions and neutron star mergers. The Compressed Baryonic Matter (CBM) experiment at FAIR is designed to measure promising observables in high-energy heavy-ion collisions, which are expected to be sensitive to the high-density equation-of-state (EOS) of nuclear matter and to new phases of Quantum Chromo Dynamics (QCD) matter at high densities. The CBM physics program, the relevant observables and the experimental setup will be discussed.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1483-1490 ◽  
Author(s):  
T. STROTHER ◽  
W. BAUER

Motivated by the success of kinetic theory in the description of observables in intermediate and high energy heavy-ion collisions, we use kinetic theory to model the dynamics of core collapse supernovae. The specific way that we employ kinetic theory to solve the relevant transport equations allows us to explicitly model the propagation of neutrinos and a full ensemble of nuclei and treat neutrino–matter interactions in a very general way. With these abilities, our simulations have observed dynamics that may prove to be an entirely new neutrino capture induced supernova explosion mechanism.


2019 ◽  
Author(s):  
Alberto Fabrizio ◽  
Riccardo Petraglia ◽  
Clemence Corminboeuf

Accurately describing intermolecular interactions within the framework of Kohn-Sham density functional theory (KS-DFT) has resulted in numerous benchmark databases over the past two decades. By far, the largest efforts have been spent on closed-shell, neutral dimers for which today, the interaction energies and geometries can be accurately reproduced by various combinations of dispersion-corrected density functional approximations (DFAs). In sharp contrast, charged, open-shell dimers remain a challenge as illustrated by the analysis of the OREL26rad benchmark set consisting of pi-dimer radical cations. Aside from the methodological aspect, achieving a proper description of radical cationic complexes is appealing due to their role as models for charge carriers in organic semiconductors. In the interest of providing an assessment of more realistic dimer systems, we construct a dataset of large radical cationic dimers (CryOrel) and jointly train the 19 parameters of a dispersion corrected, range-separated hybrid density functional (wB97X-dDsC), with the objective of providing the maximum balance between the treatment of long-range London dispersion and reduction of the delocalization error. These conditions are essential to obtain accurate energy profiles and binding energies of charged, open-shell dimers. Comparisons with the performance of the parent wB97X functional series and state-of-the-art wavefunction based methods are provided. <br>


1974 ◽  
Vol 29 (9) ◽  
pp. 1267-1275 ◽  
Author(s):  
Gerhard Soff ◽  
Berndt Müller ◽  
Johann Rafelski

A careful investigation of different corrections to binding energies of electrons in almost critical fields is performed. We investigate quantitatively the influence of the nuclear charge parameters, nuclear mass, degree of ionization on the value of the critical charge of the nucleus. Rather qualitative arguments are given to establish the contribution of the quantumelectrodynamic corrections, which are found to be small. Some phenomenological modifications of QED are quantitatively investigated and found to be of negligible influence on the value of the critical field. For heavy ion collisions with Z1+Z2>Zcr the critical separations between ions are given as results of precise solutions of the relativistic two coulomb center problem. Corrections due to electron-electron interaction are considered. We find (with present theoretical accuracy) Zcr=173±2, in the heavy ion collisions Rcr(U-U) = 34.7±2 fm and Rcr (U-Cf)=47.7±2 fm. We shortly consider the possibility of spontaneous muon production in muonic supercritical fields.


2007 ◽  
Vol 16 (04) ◽  
pp. 1073-1081 ◽  
Author(s):  
TERRANCE STROTHER ◽  
WOLFGANG BAUER

Motivated by the success of kinetic theory in the description of observables in intermediate and high energy heavy ion collisions, we use kinetic theory to model the dynamics of collapsing iron cores in type II supernova explosions. The algorithms employed, the rational for choosing them, and some preliminary results are discussed.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 487
Author(s):  
Vladimir N. Kondratyev

Nucleosynthesis at latge magnetic induction levels relevant to core-collapse supernovae and neutron star mergers is considered. For respective magnetic fields of a strength up to ten teratesla, atomic nuclei exhibit a linear magnetic response due to the Zeeman effect. Such nuclear reactivity can be described in terms of magnetic susceptibility. Susceptibility maxima correspond to half-filled shells. The neutron component rises linearly with increasing shell angular momentum, while the contribution of protons grows quadratically due to considerable income from orbital magnetization. For a case j = l + 1/2, the proton contribution makes tens of nuclear magnetons and significantly exceeds the neutron values which give several units. In a case j = l − 1/2, the proton component is almost zero up to the g shell. A noticeable increase in the generation of corresponding explosive nucleosynthetic products with antimagic numbers is predicted for nuclei at charge freezing conditions. In the iron group region, new seeds are also created for the r-process. In particular, the magnetic enhancement of the volume of 44Ti isotopes is consistent with results from observations and indicates the substantial increase in the abundance of the main titanium isotope (48Ti) in the Galaxy’s chemical composition. Magnetic effects are proven to result in a shift of the r-process path towards smaller mass numbers, as well as an increase in the volume of low-mass nuclides in peaks of the r-process nuclei.


2019 ◽  
Vol 24 ◽  
pp. 207
Author(s):  
A. Papageorgiou ◽  
G. A. Souliotis ◽  
Y. K. Kwon ◽  
K. Tshoo ◽  
S. C. Jeong ◽  
...  

In this contribution we summarize recent efforts to describe the production of rare isotopes with beams of 15–25 MeV/nucleon expected from low-energy facilities. We first present calculated production cross sections of proton-rich nuclides from collisions of stable beams of mass A∼60–80. Our calculations are performed with the phenomenological deep-inelastic transfer (DIT) model and the microscopic con- strained molecular dynamics model (CoMD). De-excitation of the excited quasipro- jectiles from the dynamical stage of the reaction is performed with the statistical multifragmentation model (SMM). In addition to the efforts on proton-rich nuclides, we investigated the possibility of producing neutron-rich rare isotopes in the mass range A∼180–200, i.e. near the third r-process peak of A=195. We performed calcu- lations for a 208Pb (15MeV/nucleon) beam and find that the multinucleon transfer mechanism leads to very neutron-rich nuclides in this mass range. We believe that our continued progress on the study of multinucleon transfer reactions using heavy- ion beams of 15–25 MeV/nucleon, can provide new opportunities in rare isotope research in the near future, as planned at the KOBRA facility of RISP in Korea.


2005 ◽  
Vol 14 (01) ◽  
pp. 129-136 ◽  
Author(s):  
WOLFGANG BAUER ◽  
TERRANCE STROTHER

Motivated by the success of kinetic theory in the description of observables in intermediate and high energy heavy-ion collisions, we apply kinetic theory to the physics of supernova explosions. The algorithmic implementation for the high-density phase of the iron core collapse is discussed.


2019 ◽  
Author(s):  
Alberto Fabrizio ◽  
Riccardo Petraglia ◽  
Clemence Corminboeuf

Accurately describing intermolecular interactions within the framework of Kohn-Sham density functional theory (KS-DFT) has resulted in numerous benchmark databases over the past two decades. By far, the largest efforts have been spent on closed-shell, neutral dimers for which today, the interaction energies and geometries can be accurately reproduced by various combinations of dispersion-corrected density functional approximations (DFAs). In sharp contrast, charged, open-shell dimers remain a challenge as illustrated by the analysis of the OREL26rad benchmark set consisting of pi-dimer radical cations. Aside from the methodological aspect, achieving a proper description of radical cationic complexes is appealing due to their role as models for charge carriers in organic semiconductors. In the interest of providing an assessment of more realistic dimer systems, we construct a dataset of large radical cationic dimers (CryOrel) and jointly train the 19 parameters of a dispersion corrected, range-separated hybrid density functional (wB97X-dDsC), with the objective of providing the maximum balance between the treatment of long-range London dispersion and reduction of the delocalization error. These conditions are essential to obtain accurate energy profiles and binding energies of charged, open-shell dimers. Comparisons with the performance of the parent wB97X functional series and state-of-the-art wavefunction based methods are provided. <br>


Sign in / Sign up

Export Citation Format

Share Document