scholarly journals Anaplasma phagocytophilum and Anaplasma ovis–Emerging Pathogens in the German Sheep Population

Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1298
Author(s):  
Benjamin Ulrich Bauer ◽  
Cristian Răileanu ◽  
Oliver Tauchmann ◽  
Susanne Fischer ◽  
Christina Ambros ◽  
...  

Knowledge on the occurrence of pathogenic tick-borne bacteria Anaplasma phagocytophilum and Anaplasma ovis is scarce in sheep from Germany. In 2020, owners from five flocks reported ill thrift lambs and ewes with tick infestation. Out of 67 affected sheep, 55 animals were clinically examined and hematological values, blood chemistry and fecal examinations were performed to investigate the underlying disease causes. Serological tests (cELISA, IFAT) and qPCR were applied to all affected sheep to rule out A. phagocytophilum and A. ovis as a differential diagnosis. Ticks were collected from selected pastures and tested by qPCR. Most animals (n = 43) suffered from selenium deficiency and endoparasites were detected in each flock. Anaplasma spp. antibodies were determined in 59% of examined sheep. Seventeen animals tested positive for A. phagocytophilum by qPCR from all flocks and A. phagocytophilum was also detected in eight pools of Ixodes ricinus. Anaplasma phagocytophilum isolates from sheep and ticks were genotyped using three genes (16S rRNA, msp4 and groEL). Anaplasma ovis DNA was identified in six animals from one flock. Clinical, hematological and biochemical changes were not significantly associated with Anaplasma spp. infection. The 16S rRNA analysis revealed known variants of A. phagocytophilum, whereas the msp4 and groEL showed new genotypes. Further investigations are necessary to evaluate the dissemination and health impact of both pathogens in the German sheep population particularly in case of comorbidities.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Łukasz Adaszek ◽  
Anna Wilczyńska ◽  
Jerzy Ziętek ◽  
Marcin Kalinowski ◽  
Oliwier Teodorowski ◽  
...  

Abstract Background Anaplasma are obligate intracellular bacteria and aetiological agents of tick-borne diseases of both veterinary and medical interest. The genus Anaplasma comprises six species: Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma phagocytophilum, Anaplasma bovis and Anaplasma platys. They can infect humans, carnivores, ruminants, rodents, insectivores, birds and reptiles. The aim of this study was to present the first clinical case of granulocytic anaplasmosis in a captive ring-tailed lemur in Poland. Case presentation A 4-year-old female lemur presented anorexia, epistaxis and tick infestation. The microscopic examination of a blood smear revealed morulae in neutrophils. Polymerase chain reaction test and sequencing of obtained PCR product confirmed infection by the GU183908 Anaplasma phagocytophilum strain. Therapeutic protocol included doxycycline (2.5 mg/kg p.o., b.i.d.) for 3 weeks and the lemur recovered within 24 h. Conclusions This is the first report on granulocytic anaplasmosis in a ring-tailed lemur in Europe, indicating that A. phagocytophilum infection must also be considered in differential diagnosis in this animal species, especially in individuals with thrombocytopenia associated with Ixodes ricinus parasitism.


Author(s):  
Balqis, U., ◽  
Hambal, M., ◽  
Admi, M., ◽  
Safika ◽  
Meutia, N., ◽  
...  
Keyword(s):  
16S Rrna ◽  

2021 ◽  
Author(s):  
Maria Iasmina Moza ◽  
Carmen Postolache

AbstractMolecular biology protocols have been more and more accessible to researchers for ecological investigations, however, these protocols always require optimization steps for the analysis of specific types of samples. The purpose of this study was to optimize a molecular protocol for the analysis of cyanobacterial 16S rRNA in Danube Delta shallows lakes. In this regard, several commercial DNA extraction kits were tested in comparison with potassium ethyl xanthogenate extraction method on different matrices. The obtained DNA was further used for 16S rRNA PCR optimization. Finally, an optimized protocol is proposed for the molecular analysis of cyanobacteria group in freshwater samples. The best DNA extraction method was the potassium xanthogenate extraction from dried cyanobacterial biomass. A dynamic in total genomic eDNA was observed, reflecting the seasonal difference in phytoplankton biomass from the studied lakes. The PCR protocol optimized by us can be successfully applied for the identification of a broad range of cyanobacterial genetic markers.


2018 ◽  
Vol 6 (5) ◽  
Author(s):  
Sandra Diaz-Sanchez ◽  
Angélica Hernández-Jarguín ◽  
Isabel G. Fernández de Mera ◽  
Pilar Alberdi ◽  
Erich Zweygarth ◽  
...  

ABSTRACTHere, we report the draft genome sequences of isolates ofAnaplasma phagocytophilum,Anaplasma marginale, andAnaplasma ovis. The genomes ofA. phagocytophilum(human),A. marginale(cattle), andA. ovis(goat) isolates from the United States were sequenced and characterized. This is the first report of anA. ovisgenome sequence.


2020 ◽  
Vol 78 (7) ◽  
pp. 541-546 ◽  
Author(s):  
Akiko Oshiro ◽  
Takashi Zaitsu ◽  
Masayuki Ueno ◽  
Yoko Kawaguchi

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168272 ◽  
Author(s):  
Rhiannon Heslop ◽  
Adama L. Bojang ◽  
Sheikh Jarju ◽  
Joseph Mendy ◽  
Sarah Mulwa ◽  
...  
Keyword(s):  
16S Rrna ◽  

1999 ◽  
Vol 65 (8) ◽  
pp. 3287-3292 ◽  
Author(s):  
Floyd E. Dewhirst ◽  
Chih-Ching Chien ◽  
Bruce J. Paster ◽  
Rebecca L. Ericson ◽  
Roger P. Orcutt ◽  
...  

ABSTRACT The “altered Schaedler flora” (ASF) was developed for colonizing germfree rodents with a standardized microbiota. The purpose of this study was to identify each of the eight ASF strains by 16S rRNA sequence analysis. Three strains were previously identified asLactobacillus acidophilus (strain ASF 360),Lactobacillus salivarius (strain ASF 361), andBacteroides distasonis (strain ASF 519) based on phenotypic criteria. 16S rRNA analysis indicated that each of the strains differed from its presumptive identity. The 16S rRNA sequence of strain ASF 361 is essentially identical to the 16S rRNA sequences of the type strains of Lactobacillus murinis and Lactobacillus animalis (both isolated from mice), and all of these strains probably belong to a single species. Strain ASF 360 is a novel lactobacillus that clusters with L. acidophilus andLactobacillus lactis. Strain ASF 519 falls into an unnamed genus containing [Bacteroides] distasonis, [Bacteroides] merdae, [Bacteroides] forsythus, and CDC group DF-3. This unnamed genus is in theCytophaga-Flavobacterium-Bacteroides phylum and is most closely related to the genus Porphyromonas. The spiral-shaped strain, strain ASF 457, is in the Flexistipesphylum and exhibits sequence identity with rodent isolates of Robertson. The remaining four ASF strains, which are extremely oxygen-sensitive fusiform bacteria, group phylogenetically with the low-G+C-content gram-positive bacteria (Firmicutes,Bacillus-Clostridium group). ASF 356, ASF 492, and ASF 502 fall into Clostridium cluster XIV of Collins et al. Morphologically, ASF 492 resembles members of this cluster,Roseburia cecicola, and Eubacterium plexicaudatum. The 16S rRNA sequence of ASF 492 is identical to that of E. plexicaudatum. Since the type strain and other viable original isolates of E. plexicaudatum have been lost, strain ASF 492 is a candidate for a neotype strain. Strain ASF 500 branches deeply in the low-G+C-content gram-positive phylogenetic tree but is not closely related to any organisms whose 16S rRNA sequences are currently in the GenBank database. The 16S rRNA sequence information determined in the present study should allow rapid identification of ASF strains and should permit detailed analysis of the interactions of ASF organisms during development of intestinal disease in mice that are coinfected with a variety of pathogenic microorganisms.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1002
Author(s):  
Athanasios Lattos ◽  
Ioannis A. Giantsis ◽  
Dimitrios Karagiannis ◽  
John A. Theodorou ◽  
Basile Michaelidis

Mass mortality events due to disease outbreaks have recently affected almost every healthy population of fan mussel, Pinna nobilis in Mediterranean Sea. The devastating mortality of the species has turned the interest of the research towards the causes of these events. After the haplosporidan infestation and the infection by Mycobacterium sp., new emerging pathogens have arisen based on the latest research. In the present study, a metagenomic approach of 16S rRNA next generation sequencing (NGS) was applied in order to assess the bacterial diversity within the digestive gland of diseased individuals as well as to carry out geographical correlations among the biodiversity of microbiome in the endangered species Pinna nobilis. The specimens originated from the mortalities occurred in 2019 in the region of Greece. Together with other bacterial genera, the results confirmed the presence of Vibrio spp., assuming synergistic effects in the mortality events of the species. Alongside with the presence of Vibrio spp., numerous bacterial genera were detected as well, including Aliivibrio spp., Photobacterium spp., Pseudoalteromonas spp., Psychrilyobacter spp. and Mycoplasma spp. Bacteria of the genus Mycoplasma were in high abundance particularly in the sample originated from Limnos island representing the first time recorded in Pinna nobilis. In conclusion, apart from exclusively the Haplosporidan and the Mycobacterium parasites, the presence of potentially pathogenic bacterial taxa detected, such as Vibrio spp., Photobactrium spp. and Alivibrio spp. lead us to assume that mortality events in the endangered Fan mussel, Pinna nobilis, may be attributed to synergistic effects of more pathogens.


Sign in / Sign up

Export Citation Format

Share Document