scholarly journals FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1509
Author(s):  
Clara Bouyx ◽  
Marion Schiavone ◽  
Jean Marie François

The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.

2021 ◽  
Vol 7 (11) ◽  
pp. 901
Author(s):  
Tania Jordá ◽  
Nicolas Rozès ◽  
Sergi Puig

Iron is a vital micronutrient that functions as an essential cofactor in multiple biological processes, including oxygen transport, cellular respiration, and metabolic pathways, such as sterol biosynthesis. However, its low bioavailability at physiological pH frequently leads to nutritional iron deficiency. The yeast Saccharomyces cerevisiae is extensively used to study iron and lipid metabolisms, as well as in multiple biotechnological applications. Despite iron being indispensable for yeast ergosterol biosynthesis and growth, little is known about their interconnections. Here, we used lipid composition analyses to determine that changes in the pattern of sterols impair the response to iron deprivation of yeast cells. Yeast mutants defective in ergosterol biosynthesis display defects in the transcriptional activation of the iron-acquisition machinery and growth defects in iron-depleted conditions. The transcriptional activation function of the iron-sensing Aft1 factor is interrupted due to its mislocalization to the vacuole. These data uncover novel links between iron and sterol metabolisms that need to be considered when producing yeast-derived foods or when treating fungal infections with drugs that target the ergosterol biosynthesis pathway.


2018 ◽  
Vol 475 (16) ◽  
pp. 2637-2652 ◽  
Author(s):  
Wataru Nomura ◽  
Miho Aoki ◽  
Yoshiharu Inoue

Dihydroxyacetone (DHA) is the smallest ketotriose, and it is utilized by many organisms as an energy source. However, at higher concentrations, DHA becomes toxic towards several organisms including the budding yeast Saccharomyces cerevisiae. In the present study, we show that DHA toxicity is due to its spontaneous conversion to methylglyoxal (MG) within yeast cells. A mutant defective in MG-metabolizing enzymes (glo1Δgre2Δgre3Δ) exhibited higher susceptibility to DHA. Intracellular MG levels increased following the treatment of glo1Δgre2Δgre3Δ cells with DHA. We previously reported that MG depolarized the actin cytoskeleton and changed vacuolar morphology. We herein demonstrated the depolarization of actin and morphological changes in vacuoles following a treatment with DHA. Furthermore, we found that both MG and DHA caused the morphological change in nucleus, and inhibited the nuclear division. Our results suggest that the conversion of DHA to MG is a dominant contributor to its cytotoxicity.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 850
Author(s):  
Karolina Nowosad ◽  
Monika Sujka ◽  
Urszula Pankiewicz ◽  
Damijan Miklavčič ◽  
Marta Arczewska

The aim of the study was to investigate the influence of a pulsed electric field (PEF) on the level of iron ion accumulation in Saccharomyces cerevisiae cells and to select PEF conditions optimal for the highest uptake of this element. Iron ions were accumulated most efficiently when their source was iron (III) nitrate. When the following conditions of PEF treatment were used: voltage 1500 V, pulse width 10 μs, treatment time 20 min, and a number of pulses 1200, accumulation of iron ions in the cells from a 20 h-culture reached a maximum value of 48.01 mg/g dry mass. Application of the optimal PEF conditions thus increased iron accumulation in cells by 157% as compared to the sample enriched with iron without PEF. The second derivative of the FTIR spectra of iron-loaded and -unloaded yeast cells allowed us to determine the functional groups which may be involved in metal ion binding. The exposure of cells to PEF treatment only slightly influenced the biomass and cell viability. However, iron-enriched yeast (both with or without PEF) showed lower fermentative activity than a control sample. Thus obtained yeast biomass containing a high amount of incorporated iron may serve as an alternative to pharmacological supplementation in the state of iron deficiency.


2008 ◽  
Vol 8 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Melanie T. Cushion ◽  
Margaret S. Collins ◽  
Michael J. Linke

ABSTRACT Pneumocystis spp. can cause a lethal pneumonia in hosts with debilitated immune systems. The manner in which these fungal infections spread throughout the lung, the life cycles of the organisms, and their strategies used for survival within the mammalian host are largely unknown, due in part to the lack of a continuous cultivation method. Biofilm formation is one strategy used by microbes for protection against environmental assaults, for communication and differentiation, and as foci for dissemination. We posited that the attachment and growth of Pneumocystis within the lung alveoli is akin to biofilm formation. An in vitro system comprised of insert wells suspended in multiwell plates containing supplemented RPMI 1640 medium supported biofilm formation by P. carinii (from rat) and P. murina (from mouse).Dramatic morphological changes accompanied the transition to a biofilm. Cyst and trophic forms became highly refractile and produced branching formations that anastomosed into large macroscopic clusters that spread across the insert. Confocal microscopy revealed stacking of viable organisms enmeshed in concanavalin A-staining extracellular matrix. Biofilms matured over a 3-week time period and could be passaged. These passaged organisms were able to cause infection in immunosuppressed rodents. Biofilm formation was inhibited by farnesol, a quorum-sensing molecule in Candida spp., suggesting that a similar communication system may be operational in the Pneumocystis biofilms. Intense staining with a monoclonal antibody to the major surface glycoproteins and an increase in (1,3)-β-d-glucan content suggest that these components contributed to the refractile properties. Identification of this biofilm process provides a tractable in vitro system that should fundamentally advance the study of Pneumocystis.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 531-540
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II (ADH2) gene of the yeast, Saccharomyces cerevisiae, is not transcribed during growth on fermentable carbon sources such as glucose. Growth of yeast cells in a medium containing only nonfermentable carbon sources leads to a marked increase or derepression of ADH2 expression. The recessive mutation, adr6-1, leads to an inability to fully derepress ADH2 expression and to an inability to sporulate. The ADR6 gene product appears to act directly or indirectly on ADH2 sequences 3' to or including the presumptive TATAA box. The upstream activating sequence (UAS) located 5' to the TATAA box is not required for the Adr6- phenotype. Here, we describe the isolation of a recombinant plasmid containing the wild-type ADR6 gene. ADR6 codes for a 4.4-kb RNA which is present during growth both on glucose and on nonfermentable carbon sources. Disruption of the ADR6 transcription unit led to viable cells with decreased ADHII activity and an inability to sporulate. This indicates that both phenotypes result from mutations within a single gene and that the adr6-1 allele was representative of mutations at this locus. The ADR6 gene mapped to the left arm of chromosome XVI at a site 18 centimorgans from the centromere.


1989 ◽  
Vol 9 (2) ◽  
pp. 442-451
Author(s):  
M Nishizawa ◽  
R Araki ◽  
Y Teranishi

To clarify carbon source-dependent control of the glycolytic pathway in the yeast Saccharomyces cerevisiae, we have initiated a study of transcriptional regulation of the pyruvate kinase gene (PYK). By deletion analysis of the 5'-noncoding region of the PYK gene, we have identified an upstream activating sequence (UASPYK1) located between 634 and 653 nucleotides upstream of the initiating ATG codon. The promoter activity of the PYK 5'-noncoding region was abolished when the sequence containing the UASPYK1 was deleted from the region. Synthetic UASPYK1 (26mer), in either orientation, was able to restore the transcriptional activity of UAS-depleted mutants when placed upstream of the TATA sequence located at -199 (ATG as +1). While the UASPYK1 was required for basal to intermediate levels of transcriptional activation, a sequence between -714 and -811 was found to be necessary for full activation. On the other hand, a sequence between -344 and -468 was found to be responsible for transcriptional repression of the PYK gene when yeast cells were grown on nonfermentable carbon sources. This upstream repressible sequence also repressed transcription, although to a lesser extent, when glucose was present in the medium. The possible mechanism for carbon source-dependent regulation of PYK expression through these cis-acting regulatory elements is discussed.


Genetics ◽  
1977 ◽  
Vol 85 (3) ◽  
pp. 373A-393
Author(s):  
James B Hicks ◽  
Ira Herskowitz

ABSTRACT The two mating types of the yeast Saccharomyces cerevisiae can be interconverted in both homothallic and heterothallic strains. Previous work indicates that all yeast cells contain the information to be both a and α and that the HO gene (in homothallic strains) promotes a change in mating type by causing a change at the mating type locus itself. In both heterothallic and homothallic strains, a defective α mating type locus can be converted to a functional a locus and subsequently to a functional α locus. In contrast, action of the HO gene does not restore mating ability to a strain defective in another gene for mating which is not at the mating type locus. These observations indicate that a yeast cell contains an additional copy (or copies) of α information, and lead to the "cassette" model for mating type interconversion. In this model, HM  a and hmα loci are blocs of unexpressed α regulatory information, and HMα and hm  a loci are blocs of unexpressed a regulatory information. These blocs are silent because they lack an essential site for expression, and become active upon insertion of this information (or a copy of the information) into the mating type locus by action of the HO gene.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1991 ◽  
Vol 11 (10) ◽  
pp. 5101-5112
Author(s):  
J S Flick ◽  
M Johnston

Growth of the yeast Saccharomyces cerevisiae on glucose leads to repression of transcription of many genes required for alternative carbohydrate metabolism. The GRR1 gene appears to be of central importance to the glucose repression mechanism, because mutations in GRR1 result in a pleiotropic loss of glucose repression (R. Bailey and A. Woodword, Mol. Gen. Genet. 193:507-512, 1984). We have isolated the GRR1 gene and determined that null mutants are viable and display a number of growth defects in addition to the loss of glucose repression. Surprisingly, grr1 mutations convert SUC2, normally a glucose-repressed gene, into a glucose-induced gene. GRR1 encodes a protein of 1,151 amino acids that is expressed constitutively at low levels in yeast cells. GRR1 protein contains 12 tandem repeats of a sequence similar to leucine-rich motifs found in other proteins that may mediate protein-protein interactions. Indeed, cell fractionation studies are consistent with this view, suggesting that GRR1 protein is tightly associated with a particulate protein fraction in yeast extracts. The combined genetic and molecular data are consistent with the idea that GRR1 protein is a primary response element in the glucose repression pathway and is required for the generation or interpretation of the signal that induces glucose repression.


1978 ◽  
Vol 24 (6) ◽  
pp. 637-642 ◽  
Author(s):  
K. C. Thomas ◽  
Mary Spencer

Effects of the carbon source and oxygen on ethylene production by the yeast Saccharomyces cerevisiae have been studied. The amounts of ethylene evolved by the yeast culture were less than those detected in the blank (an equal volume of uninoculated medium), suggesting a net absorption of ethylene by the yeast cells. Addition of glucose to the lactate-grown yeast culture induced ethylene production. This glucose-induced stimulation of ethylene production was inhibited to a great extent by cycloheximide. Results suggested that the yeast cells in the presence of glucose synthesized an ethylene precursor and passed it into the medium. The conversion of this precursor to ethylene might be stimulated by oxygen. The fact that ethylene was produced by the yeast growing anaerobically and also by respiration-deficient mutants isolated from the wild-type yeast suggested that mitochondrial ATP synthesis was not an absolute requirement for ethylene biogenesis.


Sign in / Sign up

Export Citation Format

Share Document