scholarly journals Encapsulation in Polymeric Nanoparticles Enhances the Enzymatic Stability and the Permeability of the GLP-1 Analog, Liraglutide, Across a Culture Model of Intestinal Permeability

Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 599 ◽  
Author(s):  
Ruba Ismail ◽  
Alexandra Bocsik ◽  
Gábor Katona ◽  
Ilona Gróf ◽  
Mária A. Deli ◽  
...  

The potential of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) to overcome the intestinal barrier that limits oral liraglutide delivery was evaluated. Liraglutide-loaded PLGA NPs were prepared by the double emulsion solvent evaporation method. In vitro release kinetics and enzymatic degradation studies were conducted, mimicking the gastrointestinal environment. The permeability of liraglutide solution, liraglutide-loaded PLGA NPs, and liraglutide in the presence of the absorption enhancer PN159 peptide was tested on the Caco-2 cell model. Liraglutide release from PLGA NPs showed a biphasic release pattern with a burst effect of less than 15%. The PLGA nanosystem protected the encapsulated liraglutide from the conditions simulating the gastric environment. The permeability of liraglutide encapsulated in PLGA NPs was 1.5-fold higher (24 × 10−6 cm/s) across Caco-2 cells as compared to liraglutide solution. PLGA NPs were as effective at elevating liraglutide penetration as the tight junction-opening PN159 peptide. No morphological changes were seen in the intercellular junctions of Caco-2 cells after treatment with liraglutide-PLGA NPs, confirming the lack of a paracellular component in the transport mechanism. PLGA NPs, by protecting liraglutide from enzyme degradation and enhancing its permeability across intestinal epithelium, hold great potential as carriers for oral GLP-1 analog delivery.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 732
Author(s):  
Jingwen Weng ◽  
Henry H. Y. Tong ◽  
Shing Fung Chow

The in vitro release study is a critical test to assess the safety, efficacy, and quality of nanoparticle-based drug delivery systems, but there is no compendial or regulatory standard. The variety of testing methods makes direct comparison among different systems difficult. We herein proposed a novel sample and separate (SS) method by combining the United States Pharmacopeia (USP) apparatus II (paddle) with well-validated centrifugal ultrafiltration (CU) technique that efficiently separated the free drug from nanoparticles. Polymeric drug nanoparticles were prepared by using a four-stream multi-inlet vortex mixer with d-α-tocopheryl polyethylene glycol 1000 succinate as a stabilizer. Itraconazole, cholecalciferol, and flurbiprofen were selected to produce three different nanoparticles with particle size <100 nm. By comparing with the dialysis membrane (DM) method and the SS methods using syringe filters, this novel SS + CU technique was considered the most appropriate in terms of the accuracy and repeatability to provide the in vitro release kinetics of nanoparticles. Interestingly, the DM method appeared to misestimate the release kinetics of nanoparticles through separate mechanisms. This work offers a superior analytical technique for studying in vitro drug release from polymeric nanoparticles, which could benefit the future development of in vitro-in vivo correlation of polymeric nanoparticles.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1092 ◽  
Author(s):  
Daniele Massella ◽  
Edvige Celasco ◽  
Fabien Salaün ◽  
Ada Ferri ◽  
Antonello Barresi

Flash nanoprecipitation (FNP) is a widely used technique to prepare particulate carriers based on various polymers, and it was proven to be a promising technology for the industrial production of drug loaded nanoparticles. However, up to now, only its application to hydrophobic compounds has been deeply studied and the encapsulation of some strongly hydrophilic compounds, such as caffeine, remains a challenge. Caffeine loaded poly-ε-caprolactone (PCL) nanoparticles were produced in a confined impinging jet mixer using acetone as the solvent and water as the antisolvent. Caffeine was dissolved either in acetone or in water to assess the effects of two different process conditions. Nanoparticles properties were assessed in terms of loading capacity (LC%), encapsulation efficiency (EE%), and in vitro release kinetics. Samples were further characterized by dynamic light scattering, scanning electron microscopy, X-ray photo electron spectroscopy, and infrared spectroscopy to determine the size, morphology, and structure of nanoparticles. FNP was proved an effective technique for entrapping caffeine in PCL and to control its release behavior. The solvent used to solubilize caffeine influences the final structure of the obtained particles. It was observed that the active principle was preferentially adsorbed at the surface when using acetone, while with water, it was embedded in the matrix structure. The present research highlights the possibility of extending the range of applications of FNP to hydrophilic molecules.


2018 ◽  
Vol 9 (2) ◽  
pp. 520-533 ◽  
Author(s):  
Manisha Pandey ◽  
Hira Choudhury ◽  
Tarakini A. P. Gunasegaran ◽  
Saranyah Shanmugah Nathan ◽  
Shadab Md ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 947 ◽  
Author(s):  
Irwandi Jaswir ◽  
Dedi Noviendri ◽  
Muhammad Taher ◽  
Farahidah Mohamed ◽  
Fitri Octavianti ◽  
...  

Fucoxanthin has interesting anticancer activity, but is insoluble in water, hindering its use as a drug. Microencapsulation is used as a technique for improving drug delivery. This study aimed to formulate fucoxanthin-loaded microspheres (F-LM) for anticancer treatment of H1299 cancer cell lines and optimize particle size (PS) and encapsulation efficiency (EE). Using response surface methodology (RSM), a face centered central composite design (FCCCD) was designed with three factors: Polyvinylalcohol (PVA), poly(d,l-lactic-co-glycolic acid) (PLGA), and fucoxanthin concentration. F-LM was produced using a modified double-emulsion solvent evaporation method. The F-LM were characterized for release profile, release kinetics, and degradation pattern. Optimal F-LM PS and EE of 9.18 µm and 33.09%, respectively, with good surface morphology, were achieved from a 0.5% (w/v) PVA, 6.0% (w/v) PLGA, 200 µg/mL fucoxanthin formulation at a homogenization speed of 20,500 rpm. PVA concentration was the most significant factor (p < 0.05) affecting PS. Meanwhile, EE was significantly affected by interaction between the three factors: PVA, PLGA, and fucoxanthin. In vitro release curve showed fucoxanthin had a high burst release (38.3%) at the first hour, followed by a sustained release stage reaching (79.1%) within 2 months. Release kinetics followed a diffusion pattern predominantly controlled by the Higuchi model. Biodegradability studies based on surface morphology changes on the surface of the F-LM, show that morphology changed within the first hour, and F-LM completely degraded within 2 months. RSM under FCCCD design improved the difference between the lowest and highest responses, with good correlation between observed and predicted values for PS and EE of F-LM.


2019 ◽  
Vol 20 (13) ◽  
pp. 3312 ◽  
Author(s):  
Ji-Hun Jang ◽  
Seung-Hyun Jeong ◽  
Yong-Bok Lee

Methotrexate (MTX) is a folic acid antagonist used as an effective drug to treat various kinds of cancers. However, MTX has limited use in cancer chemotherapy due to its adverse effects such as poor bioavailability, low specificity, drug resistance, and dose-dependent side effects. To improve lymphatic delivery and reduce toxicity of MTX, MTX-loaded nanoparticles (NPs) were prepared in the present study. NPs were prepared with double emulsion solvent evaporation method using poly(lactide-co-glycolide) (PLGA). NPs were assessed for size, encapsulation efficiency, morphology, Fourier-transform infrared spectroscopy, X-ray diffraction, and thermal characterization. In vitro release profiles and cytotoxicity of these NPs were also evaluated. Prepared NPs and free MTX were administered orally or intravenously (5 mg/kg as MTX) to rats to evaluate their pharmacokinetic characteristics and lymphatic delivery effects. Mean particle size and encapsulation efficiency of NPs were 163.7 ± 10.25 nm and 93.3 ± 0.5%, respectively. Prepared NPs showed a sustained release profile of MTX in vitro and may be effective to cancer cells. Area under the blood concentration-time curve, total clearance, half-life, and lymphatic targeting efficiency were significantly different (p < 0.05) between prepared NPs and free MTX. These results demonstrate that MTX-loaded PLGA NPs are good candidates for targeted delivery of MTX to the lymphatic system.


Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Tilak R. Bhardwaj ◽  
Rajesh K. Singh

Aims: In the present study, polymer-drug conjugates were synthesized based on azo-bond cleavage drug delivery approach for targeting erlotinib as anticancer drug specifically to the colon for the proficient treatment of colon cancer. Background: Colon cancer (CC) is the third commonly detected tumor worldwide and it make up about 10 % of all cases of cancers. Most of the chemotherapeutic drugs available for treating colon cancer are not only toxic to cancerous cells but also to the normal healthy cells. Among the various approaches to get rid of the adverse effects of anticancer agents, prodrugs are one of the most imperative approaches. Objective: The objective of the study is to chemically modify the erlotinib drug through azo-bond linkage and suitable spacer which will be finally linked to polymeric backbone to give desired polymer linked prodrug. The azo reductase enzyme present in colon is supposed to cleave the azo-bond specifically and augment the drug release at the colon. Methods: The synthesized conjugates were characterized by IR and 1H-NMR spectroscopy. The cleavage of aromatic azobond resulted in a potential colon-specific liberation of drug from conjugate studied in rat fecal contents. In vitro release profiles of polyphosphazene-linked conjugates of erlotinib have been studied at pH 1.2, pH 6.8 and pH 7.4. The stability study was designed to exhibit that free drug was released proficiently and unmodified from polyphosphazene-erlotinib conjugates having aromatic azo-bond in artificial colon conditions. Results: The synthesized conjugates were demonstrated to be stable in simulated upper gastro-intestinal tract conditions. The drug release kinetics shows that all the polymer-drug conjugates of erlotinib follow zero-order release kinetics which indicates that the drug release from the polymeric backbone is independent of its concentration. Kinetic study of conjugates with slope (n) shows the anomalous type of release with an exponent (n) > 0.89 indicating a super case II type of release. Conclusion: These studies indicate that polyphosphazene linked drug conjugates of erlotinib could be the promising candidates for the site-specific treatment of colon cancer with least detrimental side-effects.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1655
Author(s):  
Zvezdelina Yaneva ◽  
Donika Ivanova ◽  
Nikolay Popov

The main goal of the present study was to investigate the microencapsulation, in vitro release capacity and efficiency of catechin-rich Acacia catechu extract by Clinosorbent-5 (CLS-5) microparticles by in-depth detailed analyses and mathematical modelling of the encapsulation and in vitro release kinetics behaviour of the polyphenol-mineral composite system. The bioflavanol encapsulation and release efficiency on/from the mineral matrix were assessed by sorption experiments and interpretative modelling of the experimental data. The surface and spectral characteristics of the natural bioactive substance and the inorganic microcarrier were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet/Visible (UV/Vis) spectrophotometric analyses. The maximum extent of catechin microencapsulation in acidic medium was 32%. The in vitro release kinetics study in simulated enzyme-free gastric medium (pH = 1.2) approved 88% maximum release efficiency achieved after 24 h. The in vitro release profile displayed that the developed bioflavanol/clinoptilolite microcarrier system provided sustained catechin in vitro release behaviour without an initial burst effect. Thus, the results from the present study are essential for the design and development of innovative catechin-CLS-5 microcarrier systems for application in human and veterinary medicine.


2021 ◽  
Vol 14 (3) ◽  
pp. 691-702
Author(s):  
Alzbeta Krausova ◽  
Petra Buresova ◽  
Lenka Sarnova ◽  
Gizem Oyman-Eyrilmez ◽  
Jozef Skarda ◽  
...  

AbstractPlectin, a highly versatile cytolinker protein, provides tissues with mechanical stability through the integration of intermediate filaments (IFs) with cell junctions. Here, we hypothesize that plectin-controlled cytoarchitecture is a critical determinant of the intestinal barrier function and homeostasis. Mice lacking plectin in an intestinal epithelial cell (IEC; PleΔIEC) spontaneously developed colitis characterized by extensive detachment of IECs from the basement membrane (BM), increased intestinal permeability, and inflammatory lesions. Moreover, plectin expression was reduced in the colons of ulcerative colitis (UC) patients and negatively correlated with the severity of colitis. Mechanistically, plectin deficiency in IECs led to aberrant keratin filament (KF) network organization and the formation of dysfunctional hemidesmosomes (HDs) and intercellular junctions. In addition, the hemidesmosomal α6β4 integrin (Itg) receptor showed attenuated association with KFs, and protein profiling revealed prominent downregulation of junctional constituents. Consistent with the effects of plectin loss in the intestinal epithelium, plectin-deficient IECs exhibited remarkably reduced mechanical stability and limited adhesion capacity in vitro. Feeding mice with a low-residue liquid diet that reduced mechanical stress and antibiotic treatment successfully mitigated epithelial damage in the PleΔIEC colon.


Sign in / Sign up

Export Citation Format

Share Document