scholarly journals Curcumin, Curcumin Nanoparticles and Curcumin Nanospheres: A Review on Their Pharmacodynamics Based on Monogastric Farm Animal, Poultry and Fish Nutrition

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 447 ◽  
Author(s):  
Mohammad Moniruzzaman ◽  
Taesun Min

Nanotechnology is an emerging field of science that is widely used in medical sciences. However, it has limited uses in monogastric farm animal as well as fish and poultry nutrition. There are some works that have been done on curcumin and curcumin nanoparticles as pharmaceutics in animal nutrition. However, studies have shown that ingestion of curcumin or curcumin nanoparticles does not benefit the animal health much due to their lower bioavailability, which may result because of low absorption, quick metabolism and speedy elimination of curcumin from the animal body. For these reasons, advanced formulations of curcumin are needed. Curcumin nanospheres is a newly evolved field of nanobiotechnology which may have beneficial effects in terms of growth increment, anti-microbial, anti-inflammatory and neuroprotective effects on animal and fish health by means of nanosphere forms that are biodegradable and biocompatible. Thus, this review aims to highlight the potential application of curcumin, curcumin nanoparticles and curcumin nanospheres in the field of monogastric farm animal, poultry and fish nutrition. We do believe that the review provides the perceptual vision for the future development of curcumin, curcumin nanoparticles and curcumin nanospheres and their applications in monogastric farm animal, poultry and fish nutrition.

2020 ◽  
Vol 21 (15) ◽  
pp. 1576-1587 ◽  
Author(s):  
Aziz H. Rad ◽  
Amin Abbasi ◽  
Hossein S. Kafil ◽  
Khudaverdi Ganbarov

In recent decades, functional foods with ingredients comprising probiotics, prebiotics and postbiotics have been gaining a lot of attention from scientists. Probiotics and postbiotics are usually applied in pharmaceutical formulations and/or commercial food-based products. These bioactive agents can be associated with host eukaryotic cells and have a key role in maintaining and restoring host health. The review describes the concept of postbiotics, their quality control and potential applications in pharmaceutical formulations and commercial food-based products for health promotion, prevention of disease and complementary treatment. Despite the effectiveness of probiotic products, researchers have introduced the concept of postbiotic to optimize their beneficial effects as well as to meet the needs of consumers to provide a safe product. The finding of recent studies suggests that postbiotics might be appropriate alternative agents for live probiotic cells and can be applied in medical, veterinary and food practice to prevent and to treat some diseases, promote animal health status and develop functional foods. Presently scientific literature confirms that postbiotics, as potential alternative agents, may have superiority in terms of safety relative to their parent live cells, and due to their unique characteristics in terms of clinical, technological and economical aspects, can be applied as promising tools in the drug and food industry for developing health benefits, and therapeutic aims.


2020 ◽  
Vol 08 ◽  
Author(s):  
Sevda Şenel

: Nanotechnology has been a rapidly expanding area of research with huge potential in many sectors, including the animal healthcare. It promises to revolutionize drug and vaccine delivery, diagnostics, and theranostics, which has become important tool in personalized medicine by integrating therapeutics and diagnostics. Nanotechnology has also been used successfully in animal nutrition. In this review, application of nanotechnology in animal health will be reviewed with its pros and cons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Callizot ◽  
C. Estrella ◽  
S. Burlet ◽  
A. Henriques ◽  
C. Brantis ◽  
...  

AbstractProgranulin (PGRN) is a protein with multiple functions including the regulation of neuroinflammation, neuronal survival, neurite and synapsis growth. Although the mechanisms of action of PGRN are currently unknown, its potential therapeutic application in treating neurodegenerative diseases is huge. Thus, strategies to increase PGRN levels in patients could provide an effective treatment. In the present study, we investigated the effects of AZP2006, a lysotropic molecule now in phase 2a clinical trial in Progressive Supranuclear Palsy patients, for its ability to increase PGRN level and promote neuroprotection. We showed for the first time the in vitro and in vivo neuroprotective effects of AZP2006 in neurons injured with Aβ1–42 and in two different pathological animal models of Alzheimer’s disease (AD) and aging. Thus, the chronic treatment with AZP2006 was shown to reduce the loss of central synapses and neurons but also to dramatically decrease the massive neuroinflammation associated with the animal pathology. A deeper investigation showed that the beneficial effects of AZP2006 were associated with PGRN production. Also, AZP2006 binds to PSAP (the cofactor of PGRN) and inhibits TLR9 receptors normally responsible for proinflammation when activated. Altogether, these results showed the high potential of AZP2006 as a new putative treatment for AD and related diseases.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 985
Author(s):  
Luisa Müller ◽  
Nicole Power Guerra ◽  
Jan Stenzel ◽  
Claire Rühlmann ◽  
Tobias Lindner ◽  
...  

Caloric restriction (CR) slows the aging process, extends lifespan, and exerts neuroprotective effects. It is widely accepted that CR attenuates β-amyloid (Aβ) neuropathology in models of Alzheimer’s disease (AD) by so-far unknown mechanisms. One promising process induced by CR is autophagy, which is known to degrade aggregated proteins such as amyloids. In addition, autophagy positively regulates glucose uptake and may improve cerebral hypometabolism—a hallmark of AD—and, consequently, neural activity. To evaluate this hypothesis, APPswe/PS1delta9 (tg) mice and their littermates (wild-type, wt) underwent CR for either 16 or 68 weeks. Whereas short-term CR for 16 weeks revealed no noteworthy changes of AD phenotype in tg mice, long-term CR for 68 weeks showed beneficial effects. Thus, cerebral glucose metabolism and neuronal integrity were markedly increased upon 68 weeks CR in tg mice, indicated by an elevated hippocampal fluorodeoxyglucose [18F] ([18F]FDG) uptake and increased N-acetylaspartate-to-creatine ratio using positron emission tomography/computer tomography (PET/CT) imaging and magnet resonance spectroscopy (MRS). Improved neuronal activity and integrity resulted in a better cognitive performance within the Morris Water Maze. Moreover, CR for 68 weeks caused a significant increase of LC3BII and p62 protein expression, showing enhanced autophagy. Additionally, a significant decrease of Aβ plaques in tg mice in the hippocampus was observed, accompanied by reduced microgliosis as indicated by significantly decreased numbers of iba1-positive cells. In summary, long-term CR revealed an overall neuroprotective effect in tg mice. Further, this study shows, for the first time, that CR-induced autophagy in tg mice accompanies the observed attenuation of Aβ pathology.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1602
Author(s):  
Guangsu Zhu ◽  
Jianxin Zhao ◽  
Hao Zhang ◽  
Wei Chen ◽  
Gang Wang

Psychobiotics are used to treat neurological disorders, including mild cognitive impairment (MCI) and Alzheimer’s disease (AD). However, the mechanisms underlying their neuroprotective effects remain unclear. Herein, we report that the administration of bifidobacteria in an AD mouse model improved behavioral abnormalities and modulated gut dysbiosis. Bifidobacterium breve CCFM1025 and WX treatment significantly improved synaptic plasticity and increased the concentrations of brain-derived neurotrophic factor (BDNF), fibronectin type III domain-containing protein 5 (FNDC5), and postsynaptic density protein 95 (PSD-95). Furthermore, the microbiome and metabolomic profiles of mice indicate that specific bacterial taxa and their metabolites correlate with AD-associated behaviors, suggesting that the gut–brain axis contributes to the pathophysiology of AD. Overall, these findings reveal that B. breve CCFM1025 and WX have beneficial effects on cognition via the modulation of the gut microbiome, and thus represent a novel probiotic dietary intervention for delaying the progression of AD.


2021 ◽  
Author(s):  
Paula Ortiz-Romero ◽  
Gustavo Egea ◽  
Luis A Pérez-Jurado ◽  
Victoria Campuzano

AbstractWilliams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by a distinctive cognitive phenotype for which there currently are not any effective treatments. We investigated the progression of behavioral deficits present in CD (complete deletion) mice, a rodent model of WBS, after chronic treatment with curcumin, verapamil and a combination of both. These compounds have been proven to have beneficial effects over different cognitive aspects of various murine models and thus, may have neuroprotective effects in WBS. Treatment was administered orally dissolved in drinking water. A set of behavioral tests demonstrated the efficiency of combinatorial treatment. Some histological and molecular analyses were performed to analyze the effects of treatment and its underlying mechanism in CD mice. Behavioral improvement correlates with the molecular recovery of several affected pathways regarding MAPK signaling, in tight relation with the control of synaptic transmission. Moreover, CD mice showed an increased activated microglia density in different brain regions, which was prevented by treatment. Therefore, results show that treatment prevented behavioral deficits by recovering altered gene expression in cortex of CD mice, reducing activated microglia and normalizing Bdnf expression levels. These findings unravel the mechanisms underlying the beneficial effects of this novel treatment on behavioral deficits observed in CD mice, and suggest that the combination of curcumin and verapamil could be a potential candidate to treat the cognitive impairments in WBS patients.


2018 ◽  
Vol 184 (4) ◽  
pp. 121-121 ◽  
Author(s):  
Katherine E Adam ◽  
Sarah Baillie ◽  
Jonathan Rushton

Retaining vets in farm practice has been identified as a key strategy to maintain an adequately trained and experienced workforce to provide animal health services for livestock enterprises and government. This qualitative study aimed to explore vets’ experiences of UK farm animal practice and their perceptions of the factors that influenced their career choices. Thematic analysis of free-text survey responses from 187 vets working in farm practice and 141 who had given up farm work identified four main themes: affect (experiences of feeling or emotions), personal life, the job and the bigger picture. Those who stayed in farm practice described satisfaction with their career and enjoyment of physical, outdoor work in rural communities. Choosing to give up farm work was influenced by both personal and professional circumstances and related frequently to management issues in practice. Veterinary businesses also face challenges from the broader agricultural and veterinary sectors that affect their ability to support and retain vets. The findings presented build on previous quantitative analysis of factors associated with retention and demonstrate the complexity of individual vets’ career choices.


Sign in / Sign up

Export Citation Format

Share Document