scholarly journals Ionically Crosslinked Complex Gels Loaded with Oleic Acid-Containing Vesicles for Transdermal Drug Delivery

Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 725 ◽  
Author(s):  
Wing-Fu Lai ◽  
Ryan Tang ◽  
Wing-Tak Wong

Skin is an attractive site for drug administration partly because of its easy accessibility and favorable properties (e.g., less invasiveness and high patient compliance) over some other common routes of administration. Despite this, the efficiency in transdermal drug delivery has been largely limited by poor skin permeation. To address this problem, this study reports the generation of oleic acid-containing vesicles, which can enhance the drug delivery efficiency while showing good stability and limited skin disruption. Upon being loaded into a complex gel, along with the incorporation of the polymer blending technique, a delivery system exhibiting tunable transdermal flux of 2,3,5,4′-tetrahydroxystilbene 2-O-β-D-glucoside is reported. Taking the good biocompatibility and tunable delivery performance into account, our system warrants further development and optimization for future applications in the treatment of skin diseases.

2021 ◽  
Vol 13 ◽  
Author(s):  
Shivani Verma ◽  
Puneet Utreja

Background: Transdermal drug delivery is considered as a better alternative to oral administration of drugs like proteins or peptides that are susceptible to extensive degradation via first pass metabolism. This delivery route also shows high patient compliance due to no use of painful injections. Conventional delivery systems like creams and gel show poor skin permeation and high dosing frequency. Objective: The objective of this work was to investigate the role of highly advanced micro and nanocarrier systems like invasomes, transfersomes, transethosomes, oleic acid vesicles, and cubosomes for transdermal drug delivery exploring literature survey. Methods: Literature survey for these advanced micro and nanocarrier systems was carried out using search engines like Pubmed and Google scholar. Results: Results of literature investigations revealed that advanced micro and nanocarrier systems discussed earlier have the caliber to enhance skin permeation of various bioactives, show sustain release, and target particular areas of skin better compared to old nanocarriers like liposomes. Conclusion: Present review concludes that advanced micro and nanocarrier systems like invasomes, transfersomes, transethosomes, oleic acid vesicles, and cubosomes are better alternatives for transdermal delivery of therapeutic agents compared to old nanocarriers like liposomes and conventional delivery systems like creams and gels.


2019 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Shikha Baghel Chauhan ◽  
Tanveer Naved ◽  
Nayyar Parvez

Objective: The combination therapy of ethinylestradiol and testosterone in post-menopausal females has shown improved sexual response and libido. The present studies were designed to develop a suitable matrix-type transdermal drug delivery system (TDDS) of ethinylestradiol and testosterone using the polymer chitosan.Methods: Five formulations (ET1 to ET5) were developed by varying the concentration of polymer and keeping the drug load constant. Physical parameters and drug excipient interaction studies were evaluated in all the formulations. In vitro skin permeation profiles of ethinylestradiol and testosterone from various formulations were simultaneously characterized in a thermostatically controlled modified Franz Diffusion cell using HPLC. Based on the physical parameters and in vitro skin permeation profile formulation ET3 containing 30 mg/ml of chitosan was found to be the best and chosen for further studies. Optimized formulation was subjected to in vivo pharmacokinetic analysis in rats using ELISA.Results: Stability profile of patch formulation ET3 depicted stability up to 3 mo. One week skin irritation evaluation in rats indicated that formulation ET3 was nonirritating. Combination transdermal patch across rat skin showed a maximum release of 92.936 and 95.03 % in 60 h with a flux of 2.088 and 21.398 µg/cm2h for ethinylestradiol and testosterone respectively.Conclusion: The net result of this study is the formulation of a stable, non-irritating transdermal patch of ethinylestradiol and testosterone, with good bioavailability and can be used as Estrogen Replacement Therapy (ERT) in postmenopausal women.


2009 ◽  
Vol 26 (6) ◽  
pp. 1344-1352 ◽  
Author(s):  
Suneela Prodduturi ◽  
Glen J. Smith ◽  
Anna M. Wokovich ◽  
William H. Doub ◽  
Benjamin J. Westenberger ◽  
...  

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Luthfia Azzahra ◽  
Soraya Ratnawulan Mita ◽  
Sriwidodo Sriwidodo

Herbal compounds have different physicochemical properties. Its use on the oral route often has low biological availability. Therefore, alternative transdermal routes are used through the skin. The stratum corneum skin layer is the most difficult layer to penetrate. Therefore it is necessary to use a drug delivery system such as ethosome, transfersome or transethosome to increase transdermal drug delivery. This review article aims to look at the potential of ethosome, transfersome, and transethosome in increasing their ability to deliver herbal drugs in terms of their formulation and characterization. Literature searches were performed using online search engines namely NCBI and Google Scholar with the keywords ‘Transdermal Drug Delivery System’, 'Ethosome', 'Transfersome', and 'Transethosome'. The result showed compositions of ethosomes are phospholipids, water, and ethanol. The composition of transfersome is phospholipid, water, and edge activator. Transethosomes are a combination of phospholipids, water, ethanol, and edge activators. The role of ethanol and edge activator is thought to increase skin permeation. Transdermal drug delivery systems can be used on herbal drugs to increase transdermal drug delivery.Keywords: Transdermal, Ethosome, Transfersome, Transethosome, Herbal.


Sign in / Sign up

Export Citation Format

Share Document