scholarly journals Production of Itraconazole Nanocrystal-Based Polymeric Film Formulations for Immediate Drug Release

Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 960
Author(s):  
Anna Karagianni ◽  
Leena Peltonen

In order to improve the solubility properties of BCS class II drug itraconazole, fast dissolving oral polymeric film formulations based on itraconazole nanocrystals were produced. Drug nanocrystals were manufactured by the wet pearl milling technique. In polymeric film formulations, hydroxypropyl methyl cellulose (HPMC) was used as a film forming polymer, and glycerin was used as a plasticizer. For nanocrystal suspensions and film formulations, thorough physicochemical characterization was performed, including particle sizing and size deviation, film appearance, weight variation, thickness, folding endurance, drug content uniformity, disintegration time, and dissolution profile. After milling, the nanoparticles were 369 nm in size with a PI value of 0.20. Nanoparticles were stable and after redispersion from film formulations, the particle size remained almost the same (330 nm and PI 0.16). The produced films were flexible, homogeneous, fast disintegrating, and drug release rate from both the nanosuspension and film formulations showed immediate release behavior. Based on the study, the film casting method for production of itraconazole nanocrystal based immediate release formulations is a good option for improved solubility.

2017 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
Zainab Ahmed Sadeq ◽  
Nawal Ayash Rajab

Objective: The objective of this research was to formulate the captopril as mucoadhesive buccal films for hypertension treatment and studying the effect of different variables on the physical and mechanical behavior of the prepared films.Methods: The bucco-adhesive patches were prepared using hydroxyl propyl methyl cellulose K4 (HPMC) as film forming a polymer with secondary polymer included carbopol 934 and eudragit RL100. The patches were prepared by a solvent casting method and evaluated for the weight variation, surface pH, mechanical properties, content, uniformity, ex-vivo mucoadhesive strength, ex-vivo permeation study and drug release study.Results: Formula F5 containing HPMC as primary polymer with carbopol 934 as secondary polymer was chosen to be the best formulation for the following parameters: surface pH6.44, tensile strength (16.06), percentage elongation at break (34.14), swelling index(18.85), mucoadhesive strength(26.2 gm) and the folding endurance was>300 with an in vitro drug release about 94.73% during 6 h.Fourier transforms infrared spectroscopy (FT-IR) and differential scanning calorimetric studies (DSC) showed no interaction between the drug and polymers.Conclusion: It can be concluded that oral mucoadhesive buccal film of captopril, an antihypertensive agent can be prepared utilizing HPMC as a film forming a polymer with carbopol as a secondary polymer which extended the drug release through the buccal mucosa for 6 h.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3941
Author(s):  
Giorgia Germini ◽  
Leena Peltonen

The aim of the study was to prepare indomethacin nanocrystal-loaded, 3D-printed, fast-dissolving oral polymeric film formulations. Nanocrystals were produced by the wet pearl milling technique, and 3D printing was performed by the semi-solid extrusion method. Hydroxypropyl methyl cellulose (HPMC) was the film-forming polymer, and glycerol the plasticizer. In-depth physicochemical characterization was made, including solid-state determination, particle size and size deviation analysis, film appearance evaluation, determination of weight variation, thickness, folding endurance, drug content uniformity, and disintegration time, and drug release testing. In drug nanocrystal studies, three different stabilizers were tested. Poloxamer F68 produced the smallest and most homogeneous particles, with particle size values of 230 nm and PI values below 0.20, and was selected as a stabilizer for the drug-loaded film studies. In printing studies, the polymer concentration was first optimized with drug-free formulations. The best mechanical film properties were achieved for the films with HPMC concentrations of 2.85% (w/w) and 3.5% (w/w), and these two HPMC levels were selected for further drug-loaded film studies. Besides, in the drug-loaded film printing studies, three different drug levels were tested. With the optimum concentration, films were flexible and homogeneous, disintegrated in 1 to 2.5 min, and released the drug in 2–3 min. Drug nanocrystals remained in the nano size range in the polymer films, particle sizes being in all film formulations from 300 to 500 nm. When the 3D-printed polymer films were compared to traditional film-casted polymer films, the physicochemical behavior and pharmaceutical performance of the films were very similar. As a conclusion, 3D printing of drug nanocrystals in oral polymeric film formulations is a very promising option for the production of immediate-release improved- solubility formulations.


2021 ◽  
Vol 11 (2) ◽  
pp. 31-37
Author(s):  
Mehak Siddiqui ◽  
L. K. Omray ◽  
Pushpendra Soni

The overall objective of the present work was to develop an oral sustained-release (SR) Metformin tablet that is prepared by the direct compression method by using hydrophilic hydroxyl propyl methyl cellulose (HPMC) and Guar gum polymer alone as well as in combination at different concentrations. Metformin is a biguanide that has a relatively short plasma half-life. It has low absolute bioavailability. All the properties were evaluated for thickness, weight variation, hardness and drug content uniformity and in vitro drug release. The mean dissolution time is used to characterize the drug release rate from a dosage form that indicates the drug release-retarding efficiency of the polymer. The hydrophilic matrix of HPMC alone could not control the Metformin release effectively for 12 h but when combined with Guar gum, it could slow down the release of drug and, thus, can be successfully employed for formulating Sustain Release matrix tablets. Keywords: Guar gum, hydroxylpropylmethylcellulose, matrix tablets, release kinetics,


2021 ◽  
Vol 24 (2) ◽  
pp. 168-179
Author(s):  
Tanoy Saha ◽  
Md Mahbubul Alam ◽  
Dilshad Noor Lira ◽  
Abu Shara Shamsur Rouf

The study aimed to develop and evaluate an immediate-release tablet dosage form of Linagliptin. Different concentrations (ranges 5-10%) of super-disintegrants, Croscarmellose sodium (CCS), and Sodium starch glycolate (SSG) were used to prepare nine tablet dosage forms (F1 to F9) through the direct compression method. The compatibility of the formulations was evaluated by FTIR to reveal any possible drug-excipient interactions and it was proved to be compatible with all formulations. Precompression (bulk density, tapped density, Carr’s index, Hausner’s ratio, and angle of repose) and post-compression parameters (weight variation, hardness, thickness, and friability) were analyzed for all tablets and the results were found satisfactory as well as within limits as per USP guidelines. All the formulated batches (F1 to F9) exhibited disintegration of tablets within 2 minutes, where formulation F9 represented the lowest disintegration time (51±3 sec) which was also found significantly better than the marketed product (310±5 sec). In terms of drug dissolution, 90% of drug release was observed for all nine formulations within 45 minutes and formulation F9 (5% CCS and 5% SSG) illustrated the rapid and highest dissolution rate compared to the marketed one’s, 100% drug release at 20 minutes and 91.77 % drug release at 30 minutes successively. The respective data sets of drug release were mathematically fitted to several kinetic models and for all formulations, drug release pattern obeyed first-order kinetics amongst those, formulation F2 (r2= 0.98), F4 (r2= 0.99), F5 (r2= 0.98), and F9 (r2= 0.97) were found to be best fitted in this kinetic norm. Based on disintegration time and dissolution data comparison to a brand leader market product, F9 was experienced as the best formulation. Furthermore, it was observed that if SSG and CCS were combined, then these two parameters were more improved compared to their separate uses. Thus, incorporation of the optimum amount of super-disintegrants in a formulation showed rapid swelling, faster disintegration as well as ease of dissolution of tablet dosage forms. Bangladesh Pharmaceutical Journal 24(2): 168-179, 2021


2018 ◽  
Vol 6 (3) ◽  
pp. 5-16 ◽  
Author(s):  
ABRAHAM LINKU ◽  
JOSEPH SIJIMOL

The aim of present work was the development of fast dissolving oral film of Loratadine to overcome the limitations of current routes of administration, to provide immediate action and increase the patient compliance. To improve the bioavailability of the drug, fast dissolving oral film were formulated using different grades of Hydroxy Propyl Methyl Cellulose(HPMC) and various plasticizers like Polyethylene Glycol(PEG) 400, glycerol, Propylene glycol(PG) by solvent casting method. The formulated films were evaluated for film thickness, surface pH, folding endurance, weight variation, % moisture loss, exvivo permeation study, tensile strength, % elongation, drug content uniformity, in vitro dissolution studies,in vitro disintegration test and in vivo study. The optimized formulation (F9) containing HPMC E5 and glycerol showed minimum disintegration time (10.5 s), highest in vitrodissolution (92.5%) and satisfactory stability. Ex vivo permeation study of optimized formulation showed a drug release of 80.6% within 10 min. The milk induced leucocytosis inrat proved that fast dissolving oral films of Loratadine produced a faster onset of action compared to the conventional tablets. These findings suggest that fast dissolving oral film of Loratadine could be potentially useful for treatment of allergy where quick onset of action is required.


2013 ◽  
Vol 16 (1) ◽  
pp. 1-9
Author(s):  
Shahriar Ahmed ◽  
Mehrina Nazmi ◽  
Ikramul Hasan ◽  
Sabiha Sultana ◽  
Shimul Haldar ◽  
...  

Fexofenadine HCl immediate release tablets were designed to increase the dissolution rate by using superdisintegrants. Different formulations of Fexofenadine HCl were prepared by direct compression method. These formulations were evaluated for hardness, thickness, friability, weight variation, disintegration time, and in vitro dissolution study. The drug release from the formulations were studied according to USP specification (USP paddle method at 50 rpm for 60 minutes) maintaining the temperature to 37°C. Sodium starch glycolate, cross carmellose sodium, crospovidone (kollidon CL), ludiflash and xanthan gum were used in 3%, 6% and 8% concentrations as superdisintegrants. Thus, the ratio of superdisintegrants was changed whereas all the other excipients as well as the active drug (Fexofenadine HCl) remained same in every formulation. Here, 0.001N HCl was used as dissolution medium according to USP and absorbances were determined by using UV spectrophotometer at 217 nm. The F-3 and F-6 formulation prepared by 8% of Sodium starch glycolate and 8% of Cross carmellose sodium showed 99.99% drug release within 30 minutes and 45 minutes, respectively. The disintegration times of F-3 and F-6 formulation were within 9 seconds. The interactions between drug and excipients were characterized by FTIR spectroscopic study. DOI: http://dx.doi.org/10.3329/bpj.v16i1.14483 Bangladesh Pharmaceutical Journal 16(1): 1-9, 2013


2019 ◽  
Vol 9 (3) ◽  
pp. 234-239
Author(s):  
Vidya Sabale ◽  
Hardikkumar Chaudhari ◽  
Prafulla Sabale

Background: The aim of the present study was to formulate and evaluate floating bioadhesive tablets of Nizatidine which is a competitive, reversible H2-receptor antagonist. Floatingbioadhesive drug delivery system exhibiting a unique combination of floatation and bioadhesion to prolong gastric residence time was prepared. Methods: Polymers used were Hydroxy Propyl Methyl Cellulose (HPMC) K15M as matrix forming water swellable release retarding polymer and carbopol 934P as bioadhesive polymer. The gas generating agents used were sodium bicarbonate and citric acid. The prepared floating bioadhesive tablets of Nizatidine were optimized by 32 factorial design to study independent variable X1 (concentration of CP 934P) and X2 (concentration of HPMC K15M) and dependent variables as floating lag time, cumulative percentage drug release at 12h and swelling index. Tablets were evaluated for various parameters such as hardness, friability, drug content, swelling behavior, floating lag time, bioadhesive strength, drug release profile and stability. Results: All the formulations passed the test for weight variation, hardness, content uniformity and showed acceptable results with respect to drug content (97.93 ± 0.57) and % friability. The tablet containing 25% HPMC K15M and 13.75 % Carbopol 934P was selected as optimized formulation which showed the floating lag time of 74.34±2.08 seconds, drug release of 97.03±0.55% at 12 h (R12h,%), S.I as 79.24±0.87 at 9 h and bioadhesive strength as 10.0023±21.47 g. Stability of the formulation was proved using stability study. Conclusion: The formulated tablets have a potential for controlled release of the drug through floatation and bioadhesion.


Author(s):  
C.C. Patil ◽  
J. Vekatesh ◽  
S. R Karajgi ◽  
Vijapure Vitthal ◽  
Ashwini G. ◽  
...  

The aim of this project was to develop sustained release matrix tablets of Repaglinide. Sustained release matrix tablets of Repaglinide were prepared by the wet granulation method using polymers like Hydroxy propyl methyl cellulose, Microcrystalline cellulose, Eudragit RS-100 in different ratios. The matrix tablets of Repaglinide were evaluated for hardness, weight variation, friability, drug content uniformity, and in-vitro drug release. In order to determine the drug release mechanisms and kinetics, the data was subjected to zero order, first order, and higuchi and peppas diffusion model. Twelve batches of sustained release matrix tablets of Repaglinide were developed. Among these formulations F4, F8 and F12 formulation showed satisfactory physicochemical properties and drug content uniformity and sustained release of drug for 12 hours with maximum release of 86.95%, 84.91% and 84.91%. The optimized formulations were characterized for Differential scanning calorimetric analysis; Fourier transforms infrared spectroscopy and scanning electron microscopic studies. IR spectroscopic studies indicated that there were no drug-excipient interactions. The prepared sustained release matrix tablets of Repaglinide were successfully developed and evaluated.


2018 ◽  
Vol 10 (5) ◽  
pp. 249 ◽  
Author(s):  
Saba Abdulhadee Jabir ◽  
Halah Talal Sulaiman

Objective: The objective of the present study was to design and optimize oral fast dissolving film (OFDF) of practically insoluble drug lafutidine in order to enhance bioavailability and patient compliance especially for a geriatric and unconscious patient who are suffering from difficulty in swallowing.Methods: The films were prepared by a solvent casting method using low-grade hydroxyl propyl methyl cellulose (HPMC E5), polyvinyl alcohol (PVA), and sodium carboxymethyl cellulose (SCMC) as film forming polymers. Polyethylene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer to enhance the film forming properties of the polymer. Tween 80 (1% solution) and poloxamer407 were used as a surfactant, citric acid as a saliva stimulating agent, and croscarmellose as a super disintegrant. Films were then tested for both physical (weight variation, thickness, surface pH, drug content) and mechanical (folding endurance, tensile strength, percent elongation, Young's modulus) characteristics. In vitro disintegration, time and drug release profile were also determined for each formula.Results: Films were found to be satisfactory when evaluated for both physical and mechanical characterizations. The surface pH of all the films was found to be within the range of salivary pH 6.8. The USP dissolution apparatus type II (paddle type) was used for in vitro drug release studies. The optimized formulation F13 gave 100 % of drug released at 2 min. It also showed satisfactory surface pH (6.2±0.2), drug content (100.1±0.01%), the disintegration time of (7.0±0.5) seconds and the time needed for 80% of medication to be released (T80%) was 0.96 min.Conclusion: Lafutidine OFDF was formulated using HPMC E5 as film-forming a polymer with PEG400 as a plasticizer. Combination of tween80 (1% solution) and poloxamer407 as a surfactant were used in the presence of croscarmellose as a super disintegrant. The chosen OFDF disintegrates within seven seconds, releases the drug rapidly and gives an action.


Author(s):  
Ankit Acharya ◽  
Mohammed Gulzar Ahmed ◽  
Ravi Chaudhari ◽  
Renukaradhya Chitti

Divalproex sodium is considered as the most important antiepileptic drug and widely used for treatment of epilepsy and bi-polar disorders and prophylaxis of migraine. The present work has been done to formulate bi-layered tablet of Divalproex sodium containing immediate release layer and sustained release layer. The FTIR study revealed that there was no interaction between drug and polymer and combination. Both layers were prepared by wet granulation technique as poor flow property exhibited by pure drug. The immediate release layer was formulated by using superdisintegrants and evaluated for physical parameters, disintegration time and in vitro drug release. The optimized immediate release layer (IF6) with highest in vitro release of 98.11 was selected for bi-layered tablet formulation. HPMC K4M and HPMC K100M polymer were used to retard the drug release from sustained release layer in different proportion and combination and evaluated for physical parameter along with in vitro drug release studies. The optimized sustained release layer (SF8) which extends the Divalproex sodium release more than 18 hrs was selected. Finally, bi-layered tablets were prepared by double compression of selected sustained release layer and immediate release layer of Divalproex sodium. The tablets were evaluated for hardness, thickness, weight variation, friability, drug content uniformity and in vitro drug release. All the physical parameters were in acceptable limit of pharmacopeial specification. The stability studies, shown the bi-layer tablet was stable at 40oC / 75% RH for a period of 3 months.  


Sign in / Sign up

Export Citation Format

Share Document